GRL language

A.T. Hofkamp

Compiled at December 30, 2007

Contents

1 Introduction 2
1.1 Goal o 2
1.2 The GRL language o v v i e e e e 3
1.3 Values e 4

2 Reference 6
2.1 Identification Lo 7
2.2 Conditional jumps 7
2.3 Define properties 7
2.4 Defining sprite collections L oL oL o 8
2.5 Vehicle graphicso 8
2.6 Building graphicso 8

2.6.1 Ground and building nodes L Lo 9
2.7 Station graphics L 10
2.8 Industry callback L 10
2.9 Cargo graphics 11
2.10 Select graphics L 11

2.10.1 Advanced computations 12
2.11 Link graphics 12
2.12 Set names of strings and vehicles oo 12
2.13 MeSSageS o e e e 13
2.14 Grlbytes 13

Chapter 1

Introduction

1.1 Goal

The goal of the GRL language is to allow specification of user-defined extensions to the Transport
Tycoon' games in a human-readable form. Another language used for this purpose is the NF0O?
language.

A specification in the NFO language is a numbered list of real sprites and pseudo sprites,
each defined by a length (in bytes), and a sequence of bytes, words, and double values. The
languages also has support for strings, and Unicode characters, and it has a number of extra
escape sequences, for example for specifying tests. While the abstraction level of the language is
quite low, it is extremely flexible. You can express anything that can be encoded as a sequence
of bytes.

The GRL language has a different starting point, it assumes that a user (a graphic artist)
should specify what he/she wants in a (to him/her) logical and compact way, and the computer
should encode that information into bytes, and make it understandable to the tycoon application.

Consequences of this idea are

e ‘Trivial’ computations such as lengths, distances, and counts are much better left to a
computer (this is why NFOrenum exists).

e The user should decide on the order of the (pseudo) sprites in the file, and specify values
for fields in them.

e Since humans are much better at text processing, fields and information should be specified
in text-form when possible.

e If you need to specify a numeric value, you may either use decimal or hexadecimal numbers,
whatever is most appropriate to you.

e The computer should do what it does best, namely collecting the field information, checking
whether it makes sense (or else report something to the user), and encode the data to correct
(pseudo) sprite(s).

The current GRL language is a small step towards that goal. The main difference is that a
(pseudo) sprite is defined not as a sequence of bytes, but as a collection of key-value pairs. The

1Programmed by Chris Sawyer, released by MicroProse.
2Developed by Josef Drexler, see http://wuw.ttdpatch.net/grfcodec/.

keys of the pairs are the names of the fields that need to be given a value in the (pseudo) sprite,
and their allowed values are allowed values of the fields.

To provide an easy way for extensions, a key-value pair always accepts a number as its value,
even if a name can be used. This improves the chance that you will be able to specify what you
intend, even if the GRL program is not ready for it. In addition, the program is liberal in accepting
values. It will complain when it doesn’t understand something, but it will continue producing
an output file, thus allowing for generating files with features that the program does not entirely
understands. The final fall-back mechanism is the grl-bytes primitive, which basically drops
you back to the NFO language. With this primitive you can specify anything, although you
probably never want to use it (and if all is well, you will never have to).

1.2 The GRL language

GRL stands for GRF Language, it is a way of specifying how your sprites and settings should be
used in the transport tycoon games.
The entire language is built on the idea of sets of key-value pairs, for example,

sprite {
filename = "c:\myfile.pcx", x-pos = 50, y-pos = 50,
x-size = 18, y-size = 10, x-rel = -1, y-rel = 5,

compression = color-O-transparent

}

Above, eight ‘key = value’ pairs (fields) specify all data of a real sprite. This is also indicated
by the word ‘sprite’ at the first line. The curly brackets around the key-value pairs indicate
that these pairs all belong together to form the specification of one real sprite. Such a set of
key-value pairs, together with the first word and the curly brackets is called a node.

In general, the order of the fields is not relevant. You can use any order that you like, as long
as you specify all data. In the same way, layout of a node is also not important. You can put
the opening curly bracket at left of the next line, or put the entire sprite definition on one line.

You can add a line comment by means of the ‘//’ sequence, also available in the NFO language.
All text after the sequence, up to the end of the line, is considered to be comment, and skipped.

You can make a list of nodes by separating them with a comma (¢,’). Also, they can be nested
in each other and they can be labeled, for example

sprite-sets {

feature = cargo,

mail-cargo:
collection {

passenger-cargo:
collection {

Note the comma after the closing bracket of both first sprite nodes, and the first collection
node.

The above is a NFO Actionl, where you can define a list of collections of sprites. At the in-
nermost level, you see the sprite nodes (without the key-value pairs for brevity of the example).
Several sprites are packed together into a collection. In front of each collection is a label (the
words mail-cargo and passengers-cargo). The colon after the word indicates that it is a label
rather than the start of another node. Unlike the key-value fields, the order of the nodes does
matter here. grl orders the node from top to bottom, that is, the collection labeled mail-cargo
is the first collection (with offset 0).

Both collections, and a ‘feature’ key-value pair are put in a sprite-sets node, which repre-
sents aNFO Actionl primitive together with the real sprites that should be directly below it.

The labels are used to refer to the labeled node from elsewhere in the GRL file, for example,
the mail-cargo label can be used in a cargo NFO Action2 shown below

cargo-graphics {
cargo-id = 75,
use-collection = mail-cargo

}

Other uses of the labels are referring to NFO Action2 primitives from NFO Action3 primitives,
and as destination label for conditional jumps (NFO Action7 and NFO Action9).

A GRL specification at the outermost level consists of a comma-separated list of nodes (with
labels for conditional jump destinations).

1.3 Values

The most basic value in GRL is the unsigned number, a sequence of digits, like ‘124’. If you want
to enter a hexadecimal number, use ‘0x’ as prefix, as in ‘0xa0’. For negative values, you can add
a dash -’ in front of an unsigned number. You can do this however only with keys that expect
signed numbers.

For a string (a sequence of characters, terminated with a NULL-byte), you can use double
quotes. The percent (‘%’) character is used as escape character, since it is not used often, and
it allows use of both forward slashes and back-slashes (most often used in file-names) without
escaping. A few examples are shown in the table below

String Codes (hexadecimal)
"abc/de" "f\ghi" 61 62 63 2f 64 65 66 5¢ 67 68 69 00
"%{percent}, %{quote}, %{0x0d} %{10}" | 25 2c 20 22 2¢ 20 0d 0Oa 00

The first example demonstrates that multiple strings after each other are silently concatenated
to form one big string first. This is useful for nicely formatting of long strings. Also, it shows
that both forward slashes and back-slashes need not be escaped. The second example shows the
two forms of escape sequences that exist in GRL strings. After the percent sign, there is either a
word or a number, surrounded by curly brackets. The shown escape sequences will always work,
at some points, the GRL encoder program allows some additional sequences (in particular, while
reporting error messages with the ‘message’ primitive NFO ActionB). Last but not least, note
that the terminating NULL-byte is always automatically added when you use a string.

For a value that is in fact an encoded ASCII character, you can use single quotes around the
character (demonstrated below in the example).

The last category of values are values longer than four bytes, or values that are more a
sequence than a single large value, for example the identification key-value pair in grl-id (NFO
Action8). In such cases, you can use a byte sequence to state its value, for example

grl-id { identification = [’A’, °H’, 1, 31,

name = "A GRL example name",

description = "%{0xXX} 2007, A.T. Hofkamp%{0x0d}%{0x0al}"
}

In a limited number of cases, you can also state a value by means of a name, for example
‘feature = train’. The word ‘train’ here represents the value 0. These names are not hard-
coded in the program but loaded from tables (currently all collected in a separate tables.grl
file).

Unfortunately, support of this feature is currently limited to simple cases. For a value that
is in fact a collection of flags (such as the ‘compression’ key-value pair in a real sprite), you can
specify a combination of words by separating them with a ‘+’ sign, as in

compression = color-O-transparent + store-compressed

Like the use of words to express values, support for the use of a combination of words to express
a number of separate flags is also quite limited currently.

Chapter 2

Reference

In this chapter, a more detailed explanation is given of all the GRL primitives. Each section
explains one primitive. There is a close relation with the NFO actions, and you are advised to
also read the corresponding NFO documentation. Often a .html page of the NewGraphicsSpec

is listed in the section as a reference.

Below is a ‘reverse’ table where you can find how each NFO action is available in terms of

GRL primitives.

NFO action | GRL primitive Description

Action0 define-properties Set various properties of objects, see Section 2.3

Actionl sprite-sets Collections of real sprites, see Section 2.4

Action2 vehicle-graphics Train, road, ship, and plane graphics, see Section 2.5
station-graphics Station graphics, see Section 2.7
building-graphics House and industry-tile graphics, see Section 2.6
industry-callback Handle production callback, see Section 2.8
cargo-graphics Cargo graphics, see Section 2.9
select-graphics Variational Action2, see Section 2.10

Action3 link-graphics Link graphics to game objects, see Section 2.11

Action4 define-text Set generic strings, see Section 2.12
define-vehicle-name | Set the name of vehicles, see Section 2.12

Actionb - Currently not implemented

Action6 - Currently not implemented

Action7 cond Conditional jump, see Section 2.2

Action8 grl-id Identification, see Section 2.1

Action9 init-cond Initial conditional jump, see Section 2.2

ActionA - Currently not implemented

ActionB message Generate a message, see Section 2.13

ActionC - Not useful

ActionD - Currently not implemented

ActionE - Currently not implemented

ActionF - Currently not implemented

Actionl0 - Currently not implemented

Actionl1 - Currently not implemented

Action12 - Currently not implemented

Action13 - Currently not implemented

- grl-bytes A sequence of bytes as pseudo-sprite, see Section 2.14

2.1 Identification

The identification of the GRF file is done with the grl-id primitive. An example

grl-id {
version = 6,
id = [’A’, "H’, 3, 11,
name = "Short name",
description = "Longer description with author name(s)’%{0x0d}%{0x0al}"

}
See NewGraphicsSpec:Action8.html for further details.

2.2 Conditional jumps

Conditional jumps or exits (jumps to the end of the file) in the GRF file are defined using the
init-cond (conditional jump during initialization), or the cond (‘normal’ conditional jump)
primitives. An example

cond {
variable = climate, test = equal, value = toy-land,
var-size = 1, destination = dest-label

}

In the condition_variable_table table, the available variable names are listed. The allowed names
for the tests are listed in the condition_test_table table, and in the condition_value_table, you
can find the list of available values. If you use a name as variable rather than its equivalent
number, the size of the value is also available, so you do not need to give var-size = 1. Finally,
dest-label is the destination that is jumped to, if the test holds. It should be a label of a sprite
at the outermost level further down the file. If you want to skip the remainder of the file, use the
special label exit. For further details on conditional jumping, see NewGraphicsSpec:Action7.html.

2.3 Define properties

With the define-properties command, you can set many of the properties of vehicles, etc. For
example,

define-properties {
feature = industry,
id-values {
id = 0,
new-value { property = substitute-industry-type, value = 0x01 },
new-value { property = industry-type-override, value = Oxlb }

3

The feature field defines for which feature you are setting the properties. Each id-values node
defines new values for one (vehicle) id. You can add more id-values nodes, each time the id
field should be incremented by one, and the same properties should be set.

Inside a new-value node, the property field sets which property should be changed, the
value field defines the new value. Its actual value depends on which property you are changing.

Finally, the size field defines how large the value is in bytes. The latter is not shown here, since
in many cases, the value of the size field can be deduced from the property field, for example,
when you set the introduction year, it is known that the size is one byte. In those cases, you can
omit the size field. See also NewGraphicsSpec:Action0.html for more details.

2.4 Defining sprite collections

With the sprite-sets primitive, you can define a number of collections containing (the same
number of) sprites. An example with one collection containing one real sprite is

sprite-sets {
feature = cargo,
mail-cargo: collection {
sprite {
filename = sprites/cargo.pcx",
compression = color-O-transparent,
x-pos = 322, y-pos = 8,
y-size = 55, x-size = 64, x-rel = -31, y-rel = -24

3

You can have more than one sprite in one collection. Just add another one, separating both with
a comma. Also, you can have more than one collection of sprites (again, just add another one,
separating them from each other with a comma). All collections must have the same number of
sprites. The names allowed at the compression key-value pair are listed in the compression_table
table. The mail-cargo label is not really necessary, except that you probably want to refer to
this collection in a later cargo-graphics primitive. See also NewGraphicsSpec:Actionl.html for
more details.

2.5 Vehicle graphics

Defining graphics for vehicles (train, road, ship, plane) is done with the vehicle-graphics
primitive. For example,

vehicle-graphics {

feature = train, cargo-id = 5,

move-types = [move-label],

load-types = [loading-empty, loading-full]
¥

This defines the vehicle graphics for a train (with ID being 5). The move-types and load-types
fields contain a list of labels that refer to sprite collections from the last sprite-sets. See also
NewGraphicsSpec:Action2Vehicles.html for more details.

2.6 Building graphics

The graphics for houses and industry-tiles are defined using the building-graphics primitive.
For example

building-graphics {
feature = industry-tile,
cargo-id = 3,
ground { },
building { }

}

The feature field defines for which kind of building you are defining graphics. Correct values
are house (number 7), and industry-tile (number 9). The cargo-id field defines which ID
this action has. Next is a ground node, and (in this case) one building node. For the early
building stages, you may want to omit the building node. Also, you can have several building
nodes which together form the building.

2.6.1 Ground and building nodes
The ground node looks like

ground {
use-sprite = ground-sprite,
draw-type = normal,
// color-translation = concrete, // if ’recolor’ is used
// sprite-from-action-1 // normally implied by use of a label
}

A ground node contains information about the sprite to draw for the ground. The use-sprite
value ground-sprite is a label that refers to a previously defined collection of sprites in a
sprite-sets node. Alternatively, you may use a number to refer to one of the built-in sprites.
The draw-type defines how to draw the sprite. Besides the value ‘normal’; you can also use
‘transparent’, and ‘ recolor’. If you set draw-type = recolor, you can set the color transla-
tion table with the color-translation field. You can either use a numeric value, or use a name.
The program does a default action when you do not specify a color translation. See NewGraph-
icsSpec:Action2HousesIndustry Tiles.html for more details. The sprite-from-action-1 field is a
boolean flag denoting that the sprite specified in the use-sprite field is a sprite from this file
rather than a built-in sprite. Normally this is set implicitly by using a label in the use-sprite
value.
building nodes are similar to ground nodes. See below for an example

building {
use-sprite = building-sprite,
draw-type = normal,
// color-translation = yellow, // if ’recolor’ is used
// always-draw-normal,
// sprite-from-action-1, // normally implied by label
x-extent = 16, y-extent = 16, z-extent = 25,
x-offset = 0, y-offset = 0, z-offset =0
// use-bounding-box-building
// relative-offset
}

The first extension is the boolean flag always-draw-normal. You can set this flag to prevent the
program from drawing the sprite in transparent mode. See NewGraphicsSpec:Action2HousesIndustryTiles.html

for more details. The second extension is that you have to specify a bounding box and a rel-
ative position of the building sprite. The x-extent, y-extent, and z-extent fields define the
bounding box, and the offset is specified with the x-offset, y-offset, and z-offset fields.

For the second and further building nodes, the offsets are all relative to the ground sprite.
If you want them relative to the previous building node, add the relative-offset flag. The
use-bounding-box-building flag is for forcing that a building sprite with a new bounding box
is used rather than more compact form that contains only the x and y offsets relative to the
previous building.

2.7 Station graphics

To define graphics for stations, you should use the station-graphics primitive, for example

station-graphics {
cargo-id = 6,
little-sets = [little-cargo],
lots-sets = [many-cargo]

}

This defines graphics for a station. Its ID number is 6, there is one sprite collection for drawing
small amounts of cargo namely the collection that little-cargo refers to, and one sprite col-
lection for rendering large amounts of cargo namely the sprite collection that the many-cargo
label refers to. If you leave the 1ittle-lots-treshold at 0 (or set it to 0), you can leave out
the 1little-sets key-value pair. See also the NewGraphicsSpec:Action2Stations.html for more
details.

2.8 Industry callback

industry-callback is currently not implemented!

With an industry callback, you can define how the industry process its goods. There are two
versions available, ‘version = 0’ with fixed numbers, and ‘version = 1’ that uses registers. An
example of an industry callback with numbers is shown below

industry-callback {
id = 18, version = O,
subtract-in-1 = 100,
subtract-in-2 = 200,
subtract-in-3 = 300,
add-out-1 = 50,
add-out-2 = 75,
again = 1

}

The version with registers has the same fields, but instead of the fields subtract-in-1, subtract-in-2,
subtract-in-3, add-out-1, add-out-2, and again getting a numeric constant of amounts of
cargo, they state the number of a register. See also NewGraphicsSpec:Action2Industries.html.

10

2.9 Cargo graphics

The graphics used for drawing cargo are set with something like

cargo-graphics {
cargo-id = 38, collection = mail-cargo

}

The ID is here 38, and the sprite collection to use is labeled mail-cargo. Since there is always
exactly one collection needed, there are no list brackets around the label. See NewGraphic-
sSpec:Action2Cargos.html for more details.

2.10 Select graphics

For a dynamical way of setting the graphics, you can use the select-graphics command. It
allows you to select between several alternatives, depending on the value of a variable. For
example

select-graphics {
feature = train,
cargo-id = 29,
type = object-byte,
variable {
name = year, // parnum = num,
shift-right = 0, and = Oxffff
},
case { minimal = O, maximal = 30, use-cargo-id = graphl },
case { minimal 31, maximal = 80, use-cargo-id = graph2 1},
default-case = graph3

3

The select-graphics starts with the feature field for which you define the graphics. The
cargo-id field define the ID number for this node. The type field defines the type of data. The
name of its value consists of two parts. The first part is either object or related, the second
part states the size, and is byte, word, or double.

Next comes the variable that you use to base your decisions on. The simple case is shown
above. In the variable node, you give the name of the variable (depends both on the value
of the feature field and the value of the type field). If the variable is in the 60+x range, an
additional parameter must be given with the parnum field. The values of the right-shift and
and fields manipulate the variable (by shifting, and and-ing with a mask). In addition, you may
add a value (specified with for example add = 21) together with either a divide or a modulo
field.

More advanced computations are also possible, see Section 2.10.1 for more details.

The selection which graphics to use is made by zero or more case nodes. Each case node
has aminimal and a maximal field to define the range, and a use-cargo-id field to state which
graphics to use. Its value is a label referring to another graphics node defined previously in the
file.

Finally, the default-case field must always be specified. It is selected when none of the
cases matched (that is, the value obtained was outside the ranges specified by the cases (in the
above example, when the year was larger than 80). The value of the default-case field is also
a label referring to a previous graphics node.

11

2.10.1 Advanced computations

Rather than just querying a single variable, and performing some simple changes on it, you can
perform more advanced computations with multiple variables. You define a tree of computations,
where the left operand is either another computation or a variable, and right operand is a variable.
For example, to subtract 30 from the year, write

compute {
variable { name = year, right-shift = 0, and = Oxffff },
operation = subtract,
variable { name = all-bits-1, right-shift = 0, and = 30 }

2.11 Link graphics

To link the new graphics to the game, you use a 1ink-graphics primitive, for example

// first define some graphics to use
st-mail: station-graphics { },
st-passengers: station-graphics { 1},
st-normal: station-graphics { },

link-graphics {
feature = station,
id = 0, id = 5,
cargo { cargo-type = mail, cargo-id = st-mail 7,
cargo { cargo-type = passengers, cargo-id = st-passengers },
default-cargo-id = st-normal

}

The feature field defines for which feature you are linking graphics. The list vehicle or station
ID’s (starting with number 0 within each feature) is defined with a number of id fields. You
may omit the list ID’s for a generic feature-specific definition. Next comes a list of cargo
nodes. For each cargo type (specified with a cargo-type field, you can state which graphics
should be used with a cargo-id field, which is either an unsigned number, or a label to a
vehicle-graphics, building-graphics, station-graphics, or select-graphics. This list
may also be empty. Finally, you must define a default graphics to use. For more information,
see NewGraphicsSpec:Action3.html.

There is an additional field livery-override to state that you want to override the normal
graphics. See NewGraphicsSpec:Action3LiveryOverride.html for more information.

2.12 Set names of strings and vehicles

To set the names of objects, use define-vehicle-name for vehicles, and define-text for generic
strings. Below is an example copied from oilpowerw.grf by Born Acorn and DaleStan.

define-text {
language = german, feature = industry,
string { number = 0x4803, text = "Kohlekraftwerk" }

12

It specifies the name of the coal-based power station in German. The meaning of the value of the
language field depends on the version that you define in the grl-id primitive. If it is less than
seven, the value of the language field is a bit set of the languages ‘american’, ‘english’, ‘german’,
‘french’, and ‘spanish’ (use a ‘+’ sign between the identifiers to give several languages). If the
version in grl-id is at least seven, it is a single language. In both cases, you can also use the
value ‘unknown’ as language. The feature field states for which feature the strings are defined.
Finally, you should define a new value for one or more strings (with incrementing numbers). In
the example, only one string changed. For more details, see NewGraphicsSpec:Action4.html.

2.13 Messages

With a message primitive, you can output a (error) message to the user. In general, messages
are preceded by a cond or init-cond primitive that tests a condition (and if it holds, jumps
over the message).

An example of an error message

message {
severity = error, language = english,
text = "%{file} is for the %{data} version of TTD.",
data = "DOS"

}

The severity field defines how serious the error is. Allowed values are ‘notice’, ‘warning’, ‘error’,
and ‘fatal’. The language field is the same as with the language field in the ‘define-text’
primitive. The text field can be any text, as long as there is a ‘%{file}’ and a ‘%{data}’ escape
sequence in it (in that order). In addition, you may have zero, one, or two ‘%{parnum}’ escape
sequences after the ‘%{data}’ sequence. The string of the data key-value pair gets inserted in the
‘%{data}’ sequence. If you use the ‘/%{parnum}’ escape sequences, you must also provide numeric
values for these by means of the parnuml (for the first occurrence), and parnum2 (for the second
occurrence) key-value pairs.

The following values for the text field are special in the sense, that the string is available in
the Tycoon program rather than being stored in the GRF file:

"%{file} requires at least TTDPatch version %{data}"

"%{file} is for the %{data} version of TTD."

"%{file} is designed to be used with %{data}"

"Invalid parameter for %{file}: parameter %{data} (J%{parm})"
"%{file} must be loaded before %{data}."

"%{file} must be loaded after %{data}."

For more information, see NewGraphicsSpec:ActionB.html.

2.14 Grl bytes
With the grl-bytes primitive, you can specify a pseudo sprite as a sequence of bytes.
grl-bytes { data = [0xOc, ’H’, ’e’, ’1°, ’1’, %0’] }

Since you can specify anything in the data block, you can specify everything that the NFO language
allows (except that the additional escape sequences, strings, etc cannot be used). At the same

13

time, it is unlikely that you ever want to use this primitive. It is here mainly as a back-up option
when the GRL language is not supporting some primitive. By using the grl-bytes you can at
least continue while the GRL language gets fixed.

14

