Nested widgets in parts

A.T. Hofkamp
March 7, 2009

Contents

1 Introduction 1
2 Nested widgets 2
3 Nested widget parts 3
4 Integration of nested widgets with the current implementation 4

A Technical details of making nested widget trees
A1 User widgets o o
A2 Container widgets
A.3 Background widgets
A4 Space widget e
A.5 Initializing a nested widget tree Lo

N O ot ot

B Technical details of using nested widget parts
B.1 Leaf widget parts e
B.2 Container widget parts L
B.3 Background widget parts oo
B.4 Space widget part
B.5 Creating a nested widget tree from its parts

© © © oo o W

1 Introduction

In the current implementation, a GUI window is contructed by means of a widget array containing
the data fields for all widgets of the window. These data fields include fixed positions of the edges
of each widget relative to the origin of the window.

The following points for possible improvement have been recognized:

e Modifying the size of one widget also means that other widgets have to be re-positioned.
This usually involves a lot of recalculating widget edge positions.

e The sizes of the widgets should be more flexible. The program supports many different
languages, and not all languages need the same amount of space in each widget.

In this document, nested widgets are proposed as a approach to combat these points.

News history

| News history

h/E DIl
4] B

Figure 1: Widgets of the news history window.
Figure 2: Nested widgets version of the news

history window.

2 Nested widgets

To overcome the weak points of the current static widget implementation, we may want to switch
to using nested widgets.

Nested widgets bring a hierarchy of widgets (a tree of widgets). At the leafs, there are the
user widgets (buttons, labels, etc). These widgets know their own position and (minimal) size,
and know how to react to resizing requests'. To keep the user widgets together, structural widgets
are used. These are at the non-leaf nodes in the tree. They manage the size and position of their
child widgets, and ultimately at the root of the hierarchy, the window as a whole.

In the OpenTTD nested widgets, the two main structural widgets are the horizontal container
widget and the vertical container widget.>? The horizontal container widget puts its child widgets
after each other from left to right®. The vertical container puts its child widgets underneath each
other.

To demonstrate the idea, have a look at Figure 1. It shows the widgets used to create the
news history window. For clarity, some space is put between the widgets. In Figure 2, structural
widgets have been added. The three widgets of the title bar have been put in a horizontal
container widget (dark gray area). The vertical scrollbar and the resize button have been put
together in a vertical container widget (light gray area). The canvas for the messages and the
vertical container holding the scrollbar and resize button are then put in another horizontal
container. Finally both horizontal containers are put in the root vertical container widget.

Note that in reality, there is no room between the container edge and its contents, so wrapping
container widgets around some other widgets does not make the window bigger.

In terms of C++ objects, the tree of widgets is clearly visible. Figure 3 gives an impression.

Using nested widgets addresses the points raised in Section 1, and has some additional ad-
vantages:

e Since each user widget knows its own size, changing its size is a local modification. The
structural widgets will shuffle all the other widgets.

1Further extensions are possible, for example rendering to the screen.

2Much like the HBox and VBox classes in the GTK GUI toolkit, or the QHBoxLayout and QVBoxLayout
classes in Qt.

3And for countries that use right-to-left languages, from right to left.

Figure 3: Internal nested widgets data structures.

e The same mechanism can be used to adapt the widget sizes opitmally for each language.
Overflow of the text will not happen any more.

e The widget tree computes the minimal size of the window, making the hard-coded values
in the WindowDesc class obsolete.

e The widget tree computes the resize steps of the window. (Each user widget knows how to
react to resizing. The structural widgets collect that information and propagate it upwards
to the root.)

The current aim of the patch is to introduce nested widgets, and to generate the widget array.
The nested widgets are however much more powerful, and can be extended to a more powerful
replacement of the current widget implementation.

The technical details of constructing a nested widget tree can be read in Appendix A. Basi-
cally, what you need to do is to construct the whole tree bottom up by instantiating each widget
and putting them in containers, putting those containers other containers, etc until the root of
the nested widget tree is reached. At that point, you can initalize the whole tree with just two
method calls, and generate the filled widget array with a third call into the nested widget tree.

3 Nested widget parts

Doing that by hand results in a lot of code that is not very nice to read and change. To solve
this problem, another data structure has been made, the nested widget parts structure. It allows
you to define the nested widget tree structure by listing all widgets in the same nested structure.
Together with proper indentation, it looks like a program fragment. An example:

static const NWidgetPart _nested_select_game_widgets[] = {
NWidget (WWT_CAPTION, COLOUR_BROWN, 0),
SetMinimalSize (336, 14), SetDataTip(STR_0307_0OPENTTD),
NWidget (WWT_PANEL, COLOUR_BROWN, 1),

NWidget (NWID_SPACER), SetMinimalSize(0, 8),

/* ’generate game’ and ’load game’ buttons */
NWidget (NWID_HORIZONTAL) ,
NWidget (NWID_SPACER), SetMinimalSize(10, 0),
NWidget (WWT_PUSHTXTBTN, COLOUR_ORANGE, SGI_GENERATE_GAME),
SetMinimalSize (158, 12),
SetDataTip (STR_0140_NEW_GAME, STR_O2FB_START_A_NEW_GAME),
NWidget (WWT_PUSHTXTBTN, COLOUR_ORANGE, SGI_LOAD_GAME),
SetMinimalSize (158, 12),
SetDataTip(STR_0141_LOAD_GAME, STR_O2FC_LOAD_A_SAVED_GAME),
NWidget (NWID_SPACER), SetMinimalSize(10, 0),
EndContainer(),

NWidget (NWID_SPACER), SetMinimalSize(0, 6),
. // Other lines with buttons deleted to increase clarity.

EndContainer (),

};

This fragment defines the top-part of the window at the ntro screen (the caption and the first
row of buttons).

The whole definition is an array of NWidgetPart structures. The root is a vertical container
widget. A new widget starts at a NWidget call. Behind it, additional settings for the widget
can be done. For user widgets only settings like SetMinimalSize () or SetDataTip() are useful.
For background (WWT_PANEL, WWT_FRAME, and WWT_INSET widgets) and container
widgets (NWID_HORIZONTAL and NWID_VERTICAL) collect all widgets following until
they encounter a EndContainer (). See Appendix B for the technical details of what is possible.

4 Integration of nested widgets with the current imple-
mentation

In the current implementation, the widget array is a central data structure, and cannot be
replaced by something else easily.

For this reason the aim of this patch is only introduction of the nested widget data structure
for describing GUI windows. The WindowDesc data structure has been extended to allow nested
widget parts as window specification. If it contains both the current widget array and the nested
widget parts, the latter is converted to another widget array, and both arrays are compared with
each other. If the original widget array is not given and nested widget parts are specified, the
latter is used as window specification.

NLeafWidget Mininal Resize
type size Filling step
WWT_PUSHBTN (false, false) 0, 0)
WWT_IMGBTN (false, false)
WWT_PUSHIMGBTN (false, false)
WWT_IMGBTN_2 (false, false)
WWT_TEXTBTN (false, false)
WWT_PUSHTXTBTN (false, false)
WWT_TEXTBTN_2 (false, false)
WWT_LABEL (false, false)
WWT_TEXT (false, false)
WWT_MATRIX (false, false)
WWT_EDITBOX (false, false)
()
()
()
()
()
()
()
()
()

OO HHOOOOOOO0O0O0O0O0 O
DO DD DO DODOHEFHEFOODODODDOOOO OO
N N s i N i s NI NI s s e N s 2 s N s

NN N N N N N S S S
==l en R en i en N en i e R e)
OO O OO o oo o oo

PN N N N N e N e e

WWT_SCROLLBAR (12, 0) false, true ,
WWT_SCROLL2BAR (12, 0) false, true ,
WWT_HSCROLLBAR (0, 12) true, false ,
WWT_CAPTION (0, 14) true, false ,
WWT_STICKYBOX (12, 14) false, false ,
WWT_RESIZEBOX (12, 12) false, false ,
WWT_CLOSEBOX (11, 14) false, false ,
WWT_DROPDOWN (0, 12) false, false ,

N AN AN AN AN AN AN AN AN N N AN N N N N N N N N

WWT_DROPDOWNIN | (0, 12) false, false

Figure 4: Default sizing settings for each type of NLeafWidget object.

A Technical details of making nested widget trees

A.1 User widgets

User widgets are created with the NLeafWidget class, as in

NWidgetLeaf *nwid = new NWidgetLeaf (type, colour, index, data, tip);
nwid->SetMinimalSize(minx, miny); // optional
nwid->SetFill(fillx, filly); // optional
nwid->SetResize(stepx, stepy); // optional

The widget is created by instantiating the NLeafWidget class. The type parameter defines what
widget to create. Depending on the type, there are default values for the sizing settings listed
in Figure 4. The data and tooltip defaults are 0x0 and STR_NULL respectively. The colour
parameter defines the colour of the widget, and index sets at what position the widget should be
placed in the widget array. The data and tip parameters define the values for the Widget::data
and the Widget::tooltips fields.

If the default sizing settings are not correct, they can be modified by calling SetMinimalSize ()
for chaning the minimal size of the widget, SetFill() for changing how the widget is extended
during filling, and SetResize () for modifying the resize step of the widget.

A.2 Container widgets

The container widgets are the structural nested widgets. They do not have size and resize proper-
ties of their own, but instead derive them from their child widgets. The simplest container widget

is the vertical container widget. It puts its child widgets underneath each other. Instantiating a
vertical container widget is done like

nwid = new NWidgetVertical();

// Add child widgets by calls like
nwid->Add(child_widget);

The container widget is never stored in the widget array, and thus has no parameters or methods
for them. After creation, adding a child widget to the container is done with the Add () method.
The first added child widget is put at the top, each next added child widget is put below the
previously added one.

The size and resize properties of the container are derived from its child widgets in the
following way:

e Its horizontal size is the biggest horizontal size of one of its child widgets. Smaller child
widgets that allow horizontal fill are expanded in horizontal direction. Smaller child widgets
that cannot be horizontally filled are centered.

e Its vertical size is the sum of the vertical sizes of all its child widgets.
e It can fill in horizontal direction if all child widgets can do horizontal fill.
e It can fill in vertical direction if at least one child widget can do vertical fill.

e The horizontal resize step is non-zero only if the horizontal resize step of all its child widgets
are non-zero. Its step size if the smallest common multiple of all its child widget horizontal
resize steps.

e The vertical resize step is 0 if none of its child widgets can resize verrtically. Otherwise, it
is the resize step of the first vertically resizable child widget. All other child widgets are
assumed not to be vertically resizable.*

The horizontal container (NWidgetHorizontal class) acts just like the vertical container,
except that vertical and horizontal are swapped. Which way ’top’ goes depends on the language
used. With languages that write from left to right, the horizontal container ° starts at the left
and extends to the right. With languages that write from right to left, the *top’ goes to the right
and the widget put each child at the left of the previous child.

A.3 Background widgets

The WWT_PANEL, WWT_INSET, and WWT_FRAME widgets can be used like a normal
user widget, or as a widget that functions as a background of another (container) child widget.
In the first case, instantiation is something like

4What you would want here is that it takes the smallest non-zero child vertical resize step, and also distribute
resizing evenly over all vertically resizable child widgets. The nested widget tree can easily be extended to handle
that. However it is not supported by the resize flags in the widget array, thus there is currently no point in doing
this.

5The direction of stacking is not a fixed property of the horizontal container widget, but is instead a parameter
of the method that assigns sizes and positions. This allows switching between both types of languages without
difficulties.

NWidgetBackground *nwid = new NWidgetBackground(type, colour, index, NULL);
nwid->SetMinimalSize (minx, miny);

nwid->SetFill(fillx, filly); // optional

nwid->SetResize(stepx, stepy); // optional

The type parameter must be one of WWT_PANEL, WWT_NSET, or WWT_FRAME.
The colour defines the colour of the background widget, and the index sets the index of the
widget in the widget array. The default minimal size is (0, 0), the widget allows filling in both
directions, but no resizing. Usually, you should set its minimal size to a non-zero size by using
the SetMinimalSize () method. If the default filling and resizing are not wanted, these can be
changed with the SetFill() and SetResize() methods.

For the second case (use as a background widget), the instantiation sequence is something
like

NWidgetContainer *ncont
// Fill the container
NWidgetBackground *nwid = new new NWidgetBackground(type, colour, index, ncont);

new NWidgetVertical(); // Construct a container widget

or more like a container widget:

NWidgetBackground *nwid = new new NWidgetBackground(type, colour, index, NULL);
// Make a child widget
nwid->Add(child_widget) ;

The fourth parameter of the background widget can be used to specify the child container widget
to use. That container widget may be filled before hand, or afterwards. The Add() method of
the background widget is simply forwarding the new widgets to its child container widget. If
you don’t specify a container, a vertical container is created automatically with the first call to
Add ().

A.4 Space widget

The space widget is a user widget that only takes room, it is never rendered onto the window.
Its purpose is to allow gaps between user widgets (thus creating groups of widgets), so the user
has a better overview of the window interface structure. Instantiation is done like

NWidgetSpacer *nwid = new NWidgetSpacer(sizex, sizey);
nwid->SetMinimalSize(minx, miny); // optional
nwid->SetFill(fillx, filly); // optional
nwid->SetResize(stepx, stepy); // optional

In the instantiation statement, the minimal size of the space is defined. Normally, either sizex or
sizey is 0. In that way, the space widget only influences one direction which makes understanding
the widget structure easier. By default, the space widget does not change size. This can be
modified with the same methods as used with the user widgets.

A.5 Initializing a nested widget tree

After constructing the nested widget tree, it needs to be initialized. This is done by two method
calls:

bool rtl = false; // We are not using a right-to-left language.
// Construct the entire nested widget tree.
// Assuming ’nwid_root’ is the root widget of the window.
int biggest_index = nwid_root->ComputeMinimalSize();
nwid_root->AssignPosition(0, O,

nwid_root->min_x, nwid_root->min_y,

(nwid_root->resize_x > 0), (nwid_root->resize_y > 0),

rtl);

The first call (ComputeMinimalSize()) performs a bottom-up traversal of the widget tree, and
pulls minimal size, fill, and resize information from the user widgets up to the root of the tree.
After the call, the (min_x, min_y) pair contains the minimal size of the window, and the (resize_x,
resize_y) pair contains the horizontal and vertical resize step sizes. The AssignPosition()
call pushes the collected information down again, and makes all data consistent with each other.
The fifth rtl boolean parameter defines whether a right-to-left language is used. Unfortunately,
OpenTTD cannot handle the value true for the rtl parameter at this time.

The details to generate a widget array from an initialized nested widget tree is a single
StoreWidget () method call. Details on how to do it can be found in the InitializeNWidgets ()
function.

B Technical details of using nested widget parts

The nested widget parts build on the nested widgets discussed in Appendix A.

The nested widget parts are slightly less expressive than making a nested widget tree man-
ually. The reason for this is to make using them easier (for example, the background widgets
always use a vertical container for their child widgets). In general, this should not give any
problems.

B.1 Leaf widget parts
A leaf widget is written in neted widget parts in the following way:

NWidget (type, colour, index),
SetMinimalSize (minx, miny),
SetFill(fillx, filly),
SetResize(stepx, stepy),
SetDataTip(data, tip),

The meaning of the parameters is the same as with the nested widgets. The order of the settings
of the second line and further is not relevant, but for consistency, the above order is recommended.
If the default values of a NLeafWidget are good, you can omit explicitly setting the value.

B.2 Container widget parts

Creating a container with all its child widgets is done with a declaration like

NWidget (NWID_HORIZONTAL), // Use NWID_VERTICAL for vertical containers
. // Put child widgets here
EndContainer (),

B.3 Background widget parts

As in the nested widgets, the nested widget parts also allow two forms of background widgets,
on the one hand as a user widget for rendering content, and on the other hand as a background
widget for its child.

A background widget for rendering own content is created with

NWidget (type, colour, index),
SetMinimalSize (minx, miny),
SetFill(fillx, filly),
SetResize(stepx, stepy),
SetDataTip(data, tip),
EndContainer(),

You can define the same fields as for a leaf widget. The type parameter must be one WWT_PANEL,
WWT_INSET, or WWT_FRAME. The EndContainer() is always needed. As with the leaf
widgets, if the default field values of the background widget are good, you can omit setting it
again.

A background widget used as a background for other widgets acts as a vertical container.
Use it as follows:

NWidget (type, colour, index),
SetDataTip(data, tip),

. // Put child widgets here
EndContainer (),

where type, colour, and index is the same as above. In this case, the background widget gets its
sizing information from the child widgets, so you don’t need to set them here. The SetDataTip()
part is only useful if its value must be different from the default values.

B.4 Space widget part

The space widget is never stored in the widget array, and thus only has a few data fields.
Instantiation is done like

NWidget (NWID_SPACER),
SetMinimalSize (minx, miny),
SetFill(fillx, filly),
SetResize(stepx, stepy),

The minx parameter is normally 0 in vertical container widgets, and the miny parameter is
normally 0 in horizontal container widgets. If the default fill and resize settings are correct, they
can be omitted here.

B.5 Creating a nested widget tree from its parts

Constructing a nested widget tree from an array of nested widget parts is done by a single
function call:

NWidgetContainer *nwid_root;
nwid_root = MakeNWidgets(_nested_select_game_widgets,
lengthof (_nested_select_game_widgets));

