Vehicle GRF Tutorials/
Examples -

Common GRF Coding
Challenges

Richard Wheeler (Zephyris) 2008

FAQs

Can I copy and paste the code into my GRFs?

Yes, and no credit required.

Can I copy and paste the code into a wiki?

Yes, but reference this document and let me know about any major corrections.
Can you add this example?

Probably, just let me know...

I think I have found a mistake...

Almost certainly, let me know and I will correct it!

Can I contribute?

Of course! This is a google docs document, so collaboration is simple.

ActionOs

I want to change a vehicle's properties.
This is a basic action0 summary on how to change vehicle properties.

Nfo Code Structure

-1 * 0 00 // ActionO (so changes vehicle properties)

00 // Feature 0 - trains (change to match your vehicle type)

NN // Number of properties to alter

01 // Alter properties of one vehicle (if more than one it alters this
vehicle and the ones with successive vehicle IDs)

** // Vehicle ID (a hexadecimal code for the vehicle to alter, change this
to match your target vehicle)

a
XX // Property XX
YY // Value YY) - repeat NN times

Look up the properties and the values they can take in the TTDPatch wiki, for example:

-1 * 0 00 // ActionO
00 // Feature 0 - trains
04 // Alter 04 properties
01 // Alter properties of one vehicle
*x // Vehicle ID
05 // Property 05 - track type
01 // Value 01 - monorail
OB // Property OB - power
10 OE // Value 10 OE - 3600 HP
12 // Property 12 - sprites
FD // Value FD - new graphics
27 // Property 27 - miscellaneous flags bitmask
03 // Value 03 = 01 + 02 - tilting train and two company colours

Notice the way each property works:

Property 05:
Described by a byte, so the value uses one byte. 3 possible values, 0, 1 or 2. Each value corresponds
to a certain outcome - in this case track type.

Property OB:
Described by a word value, so the value uses two bytes. The value is directly converted to a humerical
outcome - in this case train power.

Property 12:
Described by a byte, so the value uses one byte. Many possible values (to use existing game sprites)
or FD for new graphics described by action 3 and action2.

Property 27:
An 8 bit (one byte) bit mask. Different properties depending on which bits are set.

How does a bitmask work?

{{not finished}}

I want to do more than just modify trains in a climate, I want
more trains!

Basic action0 summary on changing vehicle climate availability, and its drawbacks if the grf is loaded
while the player is in the wrong climate.

{{not finished}}

I want to make some trams!

Basic action0 summary on the road vehicle miscellaneous flag for trams. Does not include how to make
articulated road vehicles.

{{not finished}}
Actionds

I want to change a vehicle's name.

Basic action4 summary on changing vehicle names.

{{not finished}}

Actionls and Normal Action2 and 3s

Normal action2s and action3s are used to define new graphics for a vehicle, which will be used if the
vehicle has "use new sprites" set in its actionO.

I want a train which uses custom graphics.

This is a basic example of how to use an action2 and action3 to give a vehicle non-cargo specific
graphics. It also covers how to assignh new graphics to a vehicle via action0. Note you cannot "make
new trains", only modify existing ones.

Nfo "translation"

There is a vehicle with no cargo specific graphics (the train).
These are the graphics for the train.
These are the real sprites to use.

This corresponds to:
e Action3
e Action2
e Action1/Real sprites

However, because nfo code can only refer to an Action2 that has been previously defined, this logical
chain must go in reverse.

Nfo Code

-1 * 0 00 // ActionO
00 // Feature 0 - trains
01 // Number of properties to alter
01 // Alter properties of one vehicle
** // Vehicle ID
12 // Property 12 - sprites for vehicle
FD // Value FD - use new sprites as defined by action3
-1 * 0 01 // Actionl
00 // Feature 0 - trains
01 // One graphics sets
08 // 8 sprites per graphics set
// 8 real sprites - one sets of 8 - set ID 00 00 (train graphics)
//
//
-1 * 0 02 // Action2
00 // Feature 0 - trains
AA // Action2 ID "AA"
01 // 1 loaded graphic set
01 // 1 loading graphic set
00 00 // Action0 sprite set for train graphics
00 00 // Action0 sprite set for train graphics
-1 * 0 03 // Action3
00 // Feature 0 - Trains
01 // Apply graphics to one vehicle
** // Vehicle ID to apply graphics to
00 // Number of cargo specific graphics sets 00 - none
AA 00 // Default action2 ID

Notice how the action2 ID may be chosen (in this case the action2 has an ID of "AA"), but the real

sprite set IDs from the actionl cannot. Real sprite sets from an actionl are always numbered counting
up from zero, and referenced as a word. Note additional properties can also be altered in the same
action0, including speed, cargo capacity, etc.

I want a wagon which uses custom graphics, with different
graphics depending on how full the vehicle is.

This is a more advanced example of how to use an action2 and action3 to give a vehicle non-cargo
specific graphics with different loading stage graphics. It also covers how to assign new graphics to a
vehicle via action0.

Nfo "translation"

There is a vehicle with no cargo specific graphics (the wagon).
These are the graphics for the wagon, there are different sets depending on how full it is.
These are the real sprites to use.

This corresponds to:
e Action3
e Action2
e Actionl/Real sprites

However, because nfo code can only refer to an Action2 that has been previously defined, this logical
chain must go in reverse.

Nfo Code

-1 * 0 00 // ActionO
00 // Feature 0 - trains
00 // Number of properties to alter
01 // Alter properties of one vehicle
** // Vehicle ID
12 // Property 12 - sprites for vehicle
FD // Value FD - use new sprites as defined by action3
-1 *0 01 // Actionl
00 // Feature 0 - trains
02 // Two graphics sets
04 // 4 sprites per graphics set
// 8 real sprites - two sets of 4 - set IDs 00 00 (empty) and 01 00 (full)
//
//
-1 * 0 02 // Action2
00 // Feature 0 - trains
AA // Action2 ID "AA"
02 // 2 loaded graphic sets
02 // 2 loading graphic sets
00 00 // ActionO sprite set for empty graphics (when moving)
01 00 // ActionO sprite set for full graphics (when moving)
00 00 // ActionO sprite set for empty graphics (when loading)
01 00 // ActionO sprite set for full graphics (when loading)
-1 *0 03 // Action3
00 // Feature 0 - Trains
01 // Apply graphics to one vehicle
** // Vehicle ID to apply graphics to
00 // Number of cargo specific graphics sets 00 - none
AA 00 // Default action2 ID

Notice how the two sets of real sprites from the actionl take IDs "00 00" and "01 00". Sprite sets in

actionl cannot be assigned IDs, and are always numbered from zero going down the real sprites, then
referenced as a word. Note additional properties can also be altered in the same action0, including
speed, cargo capacity, etc.

But I want 3 stages of loading, then when the vehicle is moving show
the wagon covered by a tarpaulin.

The code structure is the same as the above, but extra real sprite sets are required (one for half full
and one for covered). The action2 can then be adapted to have only one loaded state (covered, for
when the vehicle is moving), and three loading stages (empty, half full and full, for when it is loading
in a station.)

Note: Action0 must be used to enable new graphics for the vehicle involved.

-1 *0 01 // Actionl
00 // Feature 0 - trains
04 // Four graphics sets
04 // 4 sprites per graphics set
// 16 real sprites - four sets of 4 - set IDs 00 00 (empty), 01 00 (half full), 02 00
(full) and 03 00 (covered)
//
//
-1 *0 02 // Action2
00 // Feature 0 - trains
AA // Action2 ID "AA"
01 // 2 loaded graphic sets
03 // 2 loading graphic sets
03 00 // ActionO sprite set for covered graphics (when moving)
00 00 // Action0 sprite set for empty graphics (when loading)
01 00 // ActionO sprite set for half full graphics (when loading)
 02 00 // ActionO sprite set for full graphics (when loading)
-1 * 0 03 // Action3
00 // Feature 0 - Trains
01 // Apply graphics to one vehicle
** // Vehicle ID to apply graphics to
00 // Number of cargo specific graphics sets 00 - none
AA 00 // Default action2 ID

I want a wagon which uses custom graphics, with 2 cargoes (coal
and iron ore) both with different graphics.

This is a basic example of how to use an action3 to give a vehicle which can carry multiple cargoes
cargo specific graphics according to which cargo it is currently carrying.

Nfo "translation"

There is a vehicle with cargo specific graphics (the wagon), it uses one set of graphics for coal and one
for iron ore.

These are the graphics for the wagon when carrying coal, there are different sets depending on how
full it is.

These are the graphics for the wagon when carrying iron ore, there are different sets depending on
how full it is.

These are the real sprites to use.

This corresponds to:
e Action3
e Action2
e Action2

e Action1/Real sprites

However, because nfo code can only refer to an Action2 that has been previously defined, this logical
chain must go in reverse.

Nfo Code

Note: Action0 must be used to enable new graphics for the vehicle involved.

-1 * 0 01 // Actionl
00 // Feature 0 - trains
03 // Two graphics sets
04 // 4 sprites per graphics set
// 12 real sprites - three sets of 4 - set IDs 01 00 (empty), 01 00 (full [coal]) and
02 00 (full [iron ore])
//
VA
-1 * 0 02 // Action2
00 // Feature 0 - trains
AA // Action2 ID "AA"
02 // 2 loaded graphic sets
02 // 2 loading graphic sets
00 00 // ActionO sprite set for empty graphics (when moving)
01 00 // ActionO sprite set for full [coal] graphics (when moving)
00 00 // ActionO sprite set for empty graphics (when loading)
01 00 // ActionO sprite set for full [coal] graphics (when loading)
-1 * 0 02 // Action2
00 // Feature 0 - trains
BB // Action2 ID "BB"
02 // 2 loaded graphic sets
02 // 2 loading graphic sets
00 00 // ActionO sprite set for empty graphics (when moving)
02 00 // ActionO sprite set for full [iron ore] graphics (when moving)
00 00 // ActionO sprite set for empty graphics (when loading)
02 00 // ActionO sprite set for full [iron ore] graphics (when loading)
-1 * 0 03 // Action3
00 // Feature 0 - Trains
01 // Apply graphics to one vehicle
** // Vehicle ID to apply graphics to
01 // Number of cargo specific graphics sets 01 - one
01 // Cargo type 01 - coal
AA 00 // Action2 ID for cargo specific graphic set one (coal graphics)
BB 00 // Default action2 ID (iron ore graphics)

The vehicle can be refitted to any bulk cargo, how do I give some
generic graphics when the wagon is not carrying coal or iron ore?

Using generic graphics (a covered wagon) for the default action2 ID in action3 lets the wagon be
refitted to any bulk cargo and carry it without looking wrong. There can still be specific graphics for
when carrying coal or iron ore.

-1 *0 01 // Actionl
00 // Feature 0 - trains
04 // Two graphics sets
04 // 4 sprites per graphics set
// 16 real sprites - four sets of 4 - set IDs 01 00 (empty), 01 00 (full [coall), 02 00
(full [iron ore]) and 03 00 (covered)
//
//

-1 * 0 02 // Action2
00 // Feature 0 - trains
AA // Action2 ID "AA"
02 // 2 loaded graphic sets
02 // 2 loading graphic sets
00 00 // Action0O sprite set for empty graphics (when moving)
01 00 // Action0O sprite set for full [coal] graphics (when moving)
00 00 // Action0 sprite set for empty graphics (when loading)
01 00 // Action0O sprite set for full [coal] graphics (when loading)
-1 * 0 02 // Action2
00 // Feature 0 - trains
BB // Action2 ID "BB"
02 // 2 loaded graphic sets
02 // 2 loading graphic sets
00 00 // Action0O sprite set for empty graphics (when moving)
02 00 // Action0 sprite set for full [iron ore] graphics (when moving)
00 00 // Action0 sprite set for empty graphics (when loading)
02 00 // Action0O sprite set for full [iron ore] graphics (when loading)
-1 * 0 02 // Action2
00 // Feature 0 - trains
BB // Action2 ID "BB"
02 // 2 loaded graphic sets
02 // 2 loading graphic sets
00 00 // Action0O sprite set for empty graphics (when moving)
03 00 // Action0O sprite set for covered graphics (when moving)
00 00 // Action0 sprite set for empty graphics (when loading)
03 00 // Action0 sprite set for covered graphics (when loading)
-1 * 0 03 // Action3
00 // Feature 0 - Trains
01 // Apply graphics to one vehicle
** // Vehicle ID to apply graphics to
02 // Number of cargo specific graphics sets 02 - two
01 // Cargo type 01 - coal
AA 00 // Action2 ID for cargo specific graphic set one (coal graphics)
08 // Cargo type 08 - iron ore
BB 00 // Action2 ID for cargo specific graphic set one (iron ore graphics)
CC 00 // Default action2 ID, ie. when carrying anything other than coal or
iron ore (covered graphics)

I want the vehicle to appear differently in the buy menu.

A basic action2 and action3 example to demonstrate how to use cargo ID FF to make different graphics
appear in the buy menu.

Nfo "translation"

There is a vehicle non-cargo specific graphics, it uses one set of graphics for use in-game and one for
in the buy menu.

These are the graphics for the train when in the buy menu.

These are the graphics for the wagon when in-game.

These are the real sprites to use.

This corresponds to:
e Action3
e Action2
e Action2
e Action1/Real sprites

However, because nfo code can only refer to an Action2 that has been previously defined, this logical
chain must go in reverse.

Note: Action0 must be used to enable new graphics for the vehicle involved.

Nfo Code

-1 * 0 01
00
02
08

//
//
//
//

Actionl
Feature 0 - trains
Two graphics sets

8 sprites per graphics set

// 16 real sprites - two sets of 8 - set ID 00 00 (normal graphics) and 01 00

graphics)

//

//

-1 *0 02
00

01
01
00
00
-1 *0 02
00
BB
01
01
01
01
-1 *0 03
00
01

* *
01
FF
BB

//
//
//
//
//
00
00
//
//
//
//
//
00
00
//
/7
//
//
//
//
00
00

Action2
Feature 0 - trains
Action2 ID "AA"

1 loaded graphic set

1 loading graphic set

// Action0O sprite set for normal graphics

// Action0O sprite set for normal graphics
Action2

Feature 0 - trains

Action2 ID "BB"

1 loaded graphic set

1 loading graphic set

// Action0O sprite set for buy menu graphics

// Action0O sprite set for buy menu graphics
Action3

Feature 0 - Trains

Apply graphics to one vehicle

Vehicle ID to apply graphics to

Number of cargo specific graphics sets 01 - one
cargo type FF - special cargo type for buy menu graphics

(buy menu

// Action2 ID for cargo specific graphic set one (buy menu graphics)

// Default action2 ID

Variational Action2s

Variational action2s apply different graphics to vehicles or objects according to a logical test against a
property of the vehicle or game.

I want to have a train passenger carriage that gets dirty/rusted
as it gets older.

This is a basic example of a variational action2. It uses a single variational action2 to check to see if
the age of the vehicle is over a critical value, and changes the graphics accordingly.

Nfo "translation"

e There is a vehicle with no cargo specific graphics (the train carriage).
When younger than 1000 days it should use "clean" graphics, if not younger than 1000 days it
should use "dirty" graphics.

e These are the graphics for the clean carriage.

e These are the graphics for the dirty carriage.

e These are the real sprites to use.

This corresponds to:
Action3

Variational Action2
Action2

Action2
Action1/Real sprites

However, because nfo code can only refer to an Action2 that has been previously defined, this logical
chain must go in reverse.

Nfo Code

Note: Action0 must be used to enable new graphics for the vehicle involved.

-1 *0 01 // Actionl
00 // Feature 0 - trains
02 // Two graphics sets
04 // 4 sprites per graphics set
// 8 real sprites - two sets of 4 - set IDs 00 00 (dirty) and 01 00 (clean)
//
//
-1 * 0 02 // Action2
00 // Feature 0 - trains
AA // Action2 ID "AA"
01 // 1 loaded graphic set
01 // 1 loading graphic set
00 00 // ActionO sprite set for dirty graphics
00 00 // ActionO sprite set for dirty graphics
-1 * 0 02 // Action2
00 // Feature 0 - trains
BB // Action2 ID "BB"
01 // 1 loaded graphic set
01 // 1 loading graphic set
01 00 // ActionO sprite set for clean graphics
01 00 // ActionO sprite set for clean graphics
-1 *0 02 // Action2
00 // Feature 0 - trains

CC // Action2 ID "CC"
85 // Variable type - Query value for current object
// Return a word
CO0 // Variable CO - vehicle age in days
00 // Bit shift 00 - do not shift variable
FF FF // AND mask FF FF - use all bits
01 // Check variable against one range
BB 00 // Action2 ID to use if result is in the first range
00 00 // Range 1 lower bound 00 00 - 0 days
E8 03 // Range 1 upper bound E8 03 - 1000 days
AA 00 // Action2 ID to use if result is not in any of the ranges
-1 * 0 03 // Action3
00 // Feature 0 - Trains
01 // Apply graphics to one vehicle
** // Vehicle ID to apply graphics to
00 // Number of cargo specific graphics sets 00 - none
CC 00 // Default action2 ID

Whats all the bit shifting and and masking in the variational action2 about?

The value of the variable "40" (vehicle age) returns a word which is the vehicle age in days
BB BB

A typical value of this may be:
A3 32

Variable type is 85, so the single lowest word from the variable (ie. the whole variable) is considered.

1. Shift the bits:

| |

BB BB
The word "BB BB" must line up with the single word "window" we are looking at the variable with.
Because the variable is also a word we do not have to shift the bytes to align the variable with the
window. Therefore the bit shift is 00.

2. AND mask

An AND mask is used to remove unwanted bits from the variable. We are interested in all the bits of
the word, so do not want to remove any bits. An AND mask works by only taking bits from the variable
which match up with a one from the AND mask, the others are set to zero. Therefore we must use an
and mask of 11111111 11111111 (FF FF hexadecimal):

FF FF 11111111 11111111 AND mask
A3 32 10100011 00110010 Variable value from the single word window
A3 32 10100011 00110010 Result from AND masking

Actually, I want the graphics to change according to the age of the
engine pulling the carriage.

The example above checks variable "C0" (the vehicle age) for variable type "85" (the vehicle itself,
return a word value). To check the age of the vehicle pulling the wagon the variable type needs to be
"86". This checks the "related vehicle"'s age - the head of the consist. The variational action2 would
then need to be:

-1 * 0 02 // Action2
00 // Feature 0 - trains
CC // Action2 ID "cCC"
86 // Variable type - Query value for the related object
// Return a word
CO0 // Variable CO0 - vehicle age in days
00 // Bit shift 00 - do not shift variable
FF FF // AND mask FF FF - use all bits

01 // Check variable against one range
BB 00 // Action2 ID to use if result is in the first range
00 00 // Range 1 lower bound 00 00 - 0 days
E8 03 // Range 1 upper bound E8 03 - 1000 days
AA 00 // Action2 ID to use if result is not in any of the ranges

I want a tilting carriage for my tilting train.

This is a more complex example of a variational action2. It uses a single variational action2 to check to
see if the curvature of the vehicle is zero, is "positive" or is "negative", and changes the graphics
accordingly.

Nfo "translation"

There is a vehicle with no cargo specific graphics (the train carriage).

When the vehicle is curved to the left the "left tilt" graphics should be used, when curved to
the right the "right tilt" graphics should be used, otherwise the "untilted" graphics should be
used.

These are the graphics for the "left tilt" carriage.

These are the graphics for the "right tilt" carriage.

These are the graphics for the "untiltied" carriage.

These are the real sprites to use.

This corresponds to:
Action3

Variational Action2
Action2

Action2

Action2
Actionl/Real sprites

However, because nfo code can only refer to an Action2 that has been previously defined, this logical
chain must go in reverse.

Nfo Code

Note: Action0 must be used to enable new graphics for the vehicle involved.

-1 *0 01 // Actionl
00 // Feature 0 - trains
02 // Two graphics sets
08 // 8 sprites per graphics set
// 24 real sprites - three sets of 8 - set IDs 00 00 (untilted), 01 00 (right tilt) and
02 00 (left tilt)
//
//
-1 *0 02 // Action2
00 // Feature 0 - trains
AA // Action2 ID "AA"
01 // 1 loaded graphic set
01 // 1 loading graphic set
00 00 // Action0 sprite set for untilted graphics
00 00 // Action0 sprite set for untilted graphics
-1 *0 02 // Action2
00 // Feature 0 - trains
BB // Action2 ID "BB"
01 // 1 loaded graphic set
01 // 1 loading graphic set

01 00 // Action0 sprite set for right tilt graphics
01 00 // Action0 sprite set for right tilt graphics
-1 * 0 02 // Action2
00 // Feature 0 - trains
CC // Action2 ID "CC"
01 // 1 loaded graphic set
01 // 1 loading graphic set
02 00 // Action0 sprite set for left tilt graphics
02 00 // Action0 sprite set for left tilt graphics
-1 * 0 02 // Action2
00 // Feature 0 - trains
DD // Action2 ID "DD"
83 // Variable type - Query value for current object
// Return a byte
45 // Variable 45 - vehicle curvature
10 // Shift variable value 10 bits - shift variable 2 bytes to the right
OF // AND mask OF - only use last 4 bits of the value
02 // Check variable against two ranges
BB 00 // Action2 ID to use if result is in the first range
01 // Range 1 lower bound 01 - right curve 45 degrees
04 // Range 1 upper bound 04 - right curve 180 degrees
CC 00 // Action2 ID to use if result is in the second range
0C // Range 1 lower bound 00 00 - left curve 180 degrees
OF // Range 1 upper bound E8 03 - right curve 45 degrees
AA 00 // Action2 ID to use if result is not in any of the ranges
-1 * 0 03 // Action3
00 // Feature 0 - Trains
01 // BApply graphics to one vehicle
** // Vehicle ID to apply graphics to
00 // Number of cargo specific graphics sets 00 - none
DD 00 // Default action2 ID

Whats all the bit shifting and and masking in the variational action2 about?

The value of the variable "45" (vehicle curvature) does not return a single number, it returns three in
the form of a dword:

XX XT XB XF
A typical value of this may be:

A3 43 51 D2
T, B and F give different numbers which carry information about the vehicle curvature. X may have any
number - it is "junk". In this case the value of T is what we are interested in.
Variable type is 81, so only the single lowest byte from the variable is considered. The value of the
variable may have to be recalculated to get the desired value in that single byte.

To analyse T we need to:

1. Shift the bits:
|

XX XT XB XF
————> XX XT XB XF

The byte "XT" must line up with the single byte "window" we are looking at the variable with. The

variable must be shifted 2 bytes, 16 bits (10 bits in hexadecimal) to the right. Therefore the bit shift is
10.

2. Get rid of the junk "X"

XT ----> 0T
An AND mask is used to remove junk from bits in the byte. We are only interested in the lowest four
bits - the range 00 to OF (0 to 15 decimal). An AND mask works by only taking bits from the variable
which match up with a one from the AND mask, the others are set to zero. Therefore we must use an

and mask of 00001111 (OF hexadecimal):
OF 00001111

B3 10110011
03 00000011

AND mask

Variable value from the single byte window
Result from AND masking

The result of the bit shift and AND mask is the variable now takes the value 0T, not XX XT XB XF,
which is much easier to work with.

Livery Override Action3

Livery overrides provide a simple way to force a vehicle (for example a passenger car) to use different
graphics when pulled by a particular engine.

I want my new double headed train graphics to have matching
passenger cars.

This is a basic example of a livery override action3, which changes the graphics which appear for a
passenger car when pulled by a particular engine.

Nfo "translation"

e There is a vehicle with no cargo specific graphics (the train engine).

e There is another vehicle which should change its graphics to these non-cargo specific graphics
when pulled by a particular engine.

e These are the graphics for the carriage.

e These are the graphics for the engine.

e These are the real sprites to use.

This corresponds to:

Action3

Livery Override Action3
Action2

Action2

Action1/Real sprites

However, because nfo code can only refer to an Action2 that has been previously defined, this logical
chain must go in reverse, with the exception of the livery override action3 which must follow the
normal action3 for the train engine.

Nfo Code

Note: Action0 must be used to enable new graphics for the vehicles involved.

-1 *0 01 // Actionl
00 // Feature 0 - trains
02 // Two graphics sets
08 // 8 sprites per graphics set
// 16 real sprites - two sets of 8 - set IDs 00 00 (engine) and 01 00 (carriage)
//
VA
-1 * 0 02 // Action2
00 // Feature 0 - trains
AA // Action2 ID "AA"
01 // 1 loaded graphic set
01 // 1 loading graphic set
00 00 // ActionO sprite set for engine graphics
00 00 // ActionO sprite set for engine graphics
-1 * 0 02 // Action2
00 // Feature 0 - trains
BB // Action2 ID "BB"
01 // 1 loaded graphic set
01 // 1 loading graphic set
01 00 // ActionO sprite set for carriage graphics
01 00 // ActionO sprite set for carriage graphics
-1 *0 03 // Action3

00
01
* %
00
AA
-1 *0 03
00
81
when attached
* %
00
BB

//
//
//
//
00
//
//
//
to
//
//
00

Feature 0 - Trains
Apply graphics to one

vehicle

Vehicle ID to apply graphics to

Number of cargo specific graphics sets 00 - none

// Default action2 ID
Action3

Feature 0 - Trains
Apply graphics to one
the vehicle mentioned

vehicle, bit 80 set so graphics override for

in the previous action3

Vehicle ID to apply graphics to

Number of cargo specific graphics sets 00 - none

// Default action2 ID

But I want to have different graphics for if the passenger is
immediately behind or in front of the double headed engine.

Action3 livery overrides can target variational action2s. This means they livery override can be aware
of the position of the carriage in the consist, and change the graphics appropriately appropriately.

-1 *0 01 // Actionl
00 // Feature 0 - trains
04 // Four graphics sets
08 // 8 sprites per graphics set

// 32 real sprites - four sets of 8 - set IDs 00 00 (engine), 01 00

02 00 (front carriage) and 01 00 (rear

//

/7

-1 *0 02
00

01
01
00
00

00
BB
01
01
01
01

00
ccC
01
01
02
02

00
DD
01
01
03
03
-1 *0 02
00
EE
81

/7
/7
/7
/7
/7
00
00
/7
/7
/7
/7
/7
00
00
/7
/7
/7
/7
/7
00
00
/7
/7
/7
/7
/7
00
00
/7
/7
/7
/7

Action2
Feature 0 - trains
Action2 ID "AA"

1 loaded graphic set
1 loading graphic set
// Action(O sprite set
// Action(O sprite set
Action2

Feature 0 - trains
Action2 ID "BB"

1 loaded graphic set
1 loading graphic set
// Action(O sprite set
// Action(O sprite set
Action2

Feature 0 - trains
Action2 ID "CC"

1 loaded graphic set
1 loading graphic set
// Action(O sprite set
// Action(O sprite set
Action2

Feature 0 - trains
Action2 ID "DD"

1 loaded graphic set
1 loading graphic set
// Action(O sprite set
// Action(O sprite set
Action2

Feature 0 - trains
Action2 ID "EE"
Variable type - Query

carriage)

for engine graphics
for engine graphics

for normal carriage graphics
for normal carriage graphics

for front carriage graphics
for front carriage graphics

for rear carriage graphics
for rear carriage graphics

value for current object

(normal carriage),

// Return a byte
40 // variable 40 - position in and length of consist
00 // Shift variable value 0 - do not shift variable
FF // AND mask FF - use all bits
01 // Check variable against one range
CC 00 // Action2 ID to use if result is in the first range
01 // Range 1 lower bound 01 - vehicle is foremost excluding double headed
engine
01 // Range 1 upper bound 01 - vehicle is foremost excluding double headed
engine
BB 00 // Action2 ID to use if result is not in any of the ranges
-1 * 0 02 // Action2
00 // Feature 0 - trains
FF // Action2 ID "FF"
81 // Variable type - Query value for current object
// Return a byte
40 // variable 40 - position in and length of consist
08 // Shift variable value 8 - shift variable 1 byte to the right
FF // AND mask FF - use all bits
01 // Check variable against one range
DD 00 // Action2 ID to use if result is in the first range
01 // Range 1 lower bound 01 - vehicle is rearmost excluding double headed
engine
01 // Range 1 upper bound 01 - vehicle is rearmost excluding double headed
engine
EE 00 // Action2 ID to use if result is not in any of the range
-1 * 0 03 // Action3
00 // Feature 0 - Trains
01 // Apply graphics to one vehicle
** // Vehicle ID to apply graphics to (train engine ID)

00 // Number of cargo specific graphics sets 00 - none
AA 00 // Default action2 ID

-1 * 0 03 // Action3
00 // Feature 0 - Trains

81 // BApply graphics to one vehicle, bit 80 set so graphics override for
when attached to the vehicle mentioned in the previous action3

** // Vehicle ID to apply graphics to (carriage ID)

00 // Number of cargo specific graphics sets 00 - none

FF 00 // Default action2 ID

Whats all the bit shifting and and masking in the variational action2 about?

Variable 40 does not return a single number, it returns 3 in the form of a dword:

00 NN BB FF
A typical value may be:

00 06 02 03
Where NN is the number of vehicles in the consist (counting from zero), BB is the position in the
consist (counting from zero) from the rear, and FF is the position in consist (counting from zero) from
the front. In the example there are 7 vehicles in the consist, and the one in question lies 3 from the
rear (4 from the front).
Variable type is 81, so only the single lowest byte from the variable is considered. The value of the
variable may have to be recalculated to get the desired value in that single byte.

To check FF:
Want to look at the single lowest byte:

1. Do not shift bits - FF is in line with the single byte "window"
I
00 NN BB FF

2. AND mask with 11111111 (FF), as all bytes want to be accessed.

The result of the bit shift and AND mask is the variable now takes the value FF, not 00 NN BB FF,
which is much easier to work with.

To check BB:
Want to look at the the single second lowest byte:

1. Shift bits 8 (1 byte) to the right to align BB with the single byte "window"

00 NN BB FF
-> 00 NN BB FF

2. AND mask with 11111111 (FF), as all bytes want to be accessed.

The result of the bit shift and AND mask is the variable now takes the value BB, not 00 NN BB FF,
which is much easier to work with.

Callback Action2s

Callbacks allow the modification of vehicle properties, like in an action0, but with the control of logical
tests possible with variational action2s.

I want to make a steam train with a tender.

Callback to build an articulated vehicle. Adds a vehicle of different vehicle ID (typically with capacity,
power, etc. of zero), for use as a tender or dummy trailer.

Nfo "translation"

There is a vehicle with no cargo specific graphics (the tender).

These are the graphics to use for the tender.

These are the real sprites to use.

There is a vehicle with no cargo specific graphics (the train engine).

The train engine has a callback which makes it into an articulated vehicle.
The callback should add the tender to follow the engine.

These are the graphics to use for the engine.

These are the real sprites to use.

This corresponds to:

Action3 (tender)

Action2 (tender)

Action1/Real sprites (tender)

Action3 (engine)

Variational action2 (check engine for callbacks)
Callback action2 (add vehicles for articulation)
Action2 (engine)

Actionl/Real sprites (engine)

However, because nfo code can only refer to an Action2 that has been previously defined, this logical
chain must go in reverse.

Nfo Code

Note: Action0 must also be used to set the other properties for the engine and tender, weight (for
tender and engine), and power, speed, cargo capacity, etc. (for engine).

-1 *0 00 // ActionO
00 // Feature 0 - trains
02 // Number of properties to alter
01 // Alter properties of one vehicle
$$ // Vehicle ID (engine)
12 // Property 12 - sprites for vehicle
FD // Value FD - use new sprites as defined by action3
1E // Property 1E - callbacks bitmask
10 // Value 10 - bit 4 set, so use articulated vehicle callback for this
vehicle
-1 * 0 00 // Action0
00 // Feature 0 - trains
03 // Number of properties to alter
01 // Alter properties of one vehicle
** // Vehicle ID (tender)
12 // Property 12 - sprites for vehicle

FD // Value FD - use new sprites as defined by action3
14 // Property 14 - power

00 // Value 00 - power of zero, therefore a wagon

OB // Property 0B - cargo capacity

00 // Value 00 - capacity of zero

-1 * 0 01 // Actionl
00 // Feature 0 - trains
01 // One graphics sets
08 // 8 sprites per graphics set
// 8 real sprites - one sets of 8 - set ID 00 00 (engine)
//
VA
-1 * 0 02 // Action2
00 // Feature 0 - trains
AA // Action2 ID "AA"
01 // 1 loaded graphic set
01 // 1 loading graphic set
00 00 // Action0O sprite set for engine graphics
00 00 // Action0O sprite set for engine graphics
-1 * 0 02 // Action2 (sets callback properties for callback ID 16)
00 // Feature 0 - Trains
BB // Action2 ID "BB"
81 // Variable type - Query value for current object
// Return a byte
10 // Variable 10 - extra callback information (number of "trailers" added
to articulated vehicle so far)
00 // Shift variable value 0 - no shift
FF // AND mask FF - use all bits
01 // Check variable against one range

** 80 // Bit 15 set, so not action2 ID but callback result. "**" - vehicle
ID to add as trailer to articulated vehicle
01 // Range 1 lower bound 1 - number of "trailers" added to articulated

vehicle so far is one
01 // Range 1 upper bound 1 - number of "trailers" added to articulated
vehicle so far is one
FF FF // Bit 15 set, so not action2 ID set but callback result. Value "FF
FF" so termination of callback chain.
-1 *0 02 // Action2 (checks for callbacks)
00 // Feature 0 - Trains
CC // Action2 ID "CC"
81 // Variable type - Query value for current object
// Return a byte
0C // Variable 0C - current callback ID
00 // Shift variable value 0 - no shift
FF // AND mask FF - use all bits
01 // Check variable against one range
BB 00 // Action2 ID to use if result is in the first range (go to callback
action?2)
16 // Range 1 lower bound 16 - callback ID is 16
16 // Range 1 upper bound 16 - callback ID is 16
AA 00 // Action2 ID to use if result is not in any of the ranges (go to
graphics action?2)
-1 *0 03 // Action3
00 // Feature 0 - Trains
01 // Apply graphics to one vehicle
$$ // Vehicle ID to apply graphics to (engine)
00 // Number of cargo specific graphics sets 00 - none
CC 00 // Default action2 ID

-1 * 0 01 // Actionl

00 // Feature 0 - trains
01 // One graphics sets
08 // 8 sprites per graphics set
// 8 real sprites - one sets of 8 - set ID 00 00 (tender)
//
//
-1 * 0 02 // Action2
00 // Feature 0 - trains
AA // Action2 ID "AA"
01 // 1 loaded graphic set
01 // 1 loading graphic set
00 00 // Action0O sprite set for tender graphics
00 00 // Action0O sprite set for tender graphics
-1 * 0 03 // Action3
00 // Feature 0 - Trains
01 // Apply graphics to one vehicle
** // Vehicle ID to apply graphics to (tender)
00 // Number of cargo specific graphics sets 00 - none
AA 00 // Default action2 ID

Ok, run that whole variational action2/callback action2 past me again!

Notice how the "check for callbacks" action2 is just a variational action2 which checks the value of
variable 0C - the callback ID. It then points to action2 ID BB 00 (to define the properties of the
callback) for callback ID 16 (articulated vehicles), and action2 ID AA 00 for all other callback values.
Multiple callbacks IDs can be checked for at this point.

The "set callback properties" action2 is also just a variational action2 which checks the value of a
variable (in this case variable 10 - properties of the current callback). Instead of pointing to action2
IDs (words with bits 9 to 15 always set to 0) it gives a callback result, indicated by having bit 15 set to
1. These give a result which is interpreted in relation to the current callback ID (in this case the vehicle
ID to add to the articulated vehicle). FF FF is used to indicate the callback has done all it needs to do,
so to stop. This must always be the default callback result pointed to in the last variational action2 in a
callback chain.

The easiest way to explain what is happening is by some pseudo-basic programing language. Logic is
shown in CAPITALS, variables in italics, [tests in square brackets] and actions in bold. This code is
written in reverse order to the actual nfo code, to make the logic make a bit more sense.

ID Action Logic

// Vehicle ID **

-= Action3 GOTO AA

CcC Action2 apply tender graphics

// Vehicle ID $$

- Action3 GOTO CC

cc Var Action2 IF [callback ID = 16] GOTO BB
ELSEIF GOTO AA

BB CB Action2 IF [number of vehicles in consist = 1] add vehicle with ID **
ELSEIF STOP
AA Action2 apply engine graphics

The tender doesn't appear in the buy menu, how do I make it appear
there?

Only the first vehicle in articulated vehicle appears in the buy menu. To make the tender appear you
have to make an additional set of real sprites for the buy menu (only one horizontal view is required),

give it an appropriate action2, and use those graphics for cargo type "FF" - buy menu graphics.

Note actionOs are required as before to set the engine and tender properties, but these are the same
as in the previous example.

-1 *0 01 // Actionl
00 // Feature 0 - trains
02 // One graphics sets
08 // 8 sprites per graphics set
// 16 real sprites - two sets of 8 - set IDs 00 00 (engine) and 01 00 (buy menu engine
and tender)
//
//
-1 *0 02 // Action2
00 // Feature 0 - trains
AA // Action2 ID "AA"
01 // 1 loaded graphic set
01 // 1 loading graphic set
00 00 // Action0O sprite set for engine graphics
00 00 // Action0O sprite set for engine graphics
-1 * 0 02 // Action2 (sets callback properties for callback ID 16)
00 // Feature 0 - Trains
BB // Action2 ID "BB"
81 // Variable type - Query value for current object
// Return a byte
10 // Variable 10 - extra callback information (number of "trailers" added
to articulated vehicle so far)
00 // Shift variable value 0 - no shift
FF // AND mask FF - use all bits
01 // Check variable against one range

** 80 // Bit 15 set, so not action2 ID but callback result. "**" - vehicle
ID to add as trailer to articulated vehicle
01 // Range 1 lower bound 1 - number of "trailers" added to articulated

vehicle so far is one
01 // Range 1 upper bound 1 - number of "trailers" added to articulated
vehicle so far is one
FF FF // Bit 15 set, so not action2 ID set but callback result. Value "FF
FF" so termination of callback chain.
-1 * 0 02 // Action2 (checks for callbacks)
00 // Feature 0 - Trains
CC // Action2 ID "cCC"
81 // Variable type - Query value for current object
// Return a byte
0C // Variable 0C - current callback ID
00 // Shift variable value 0 - no shift
FF // AND mask FF - use all bits
01 // Check variable against one range
BB 00 // Action2 ID to use if result is in the first range (go to callback
action?)
16 // Range 1 lower bound 16 - callback ID is 16
16 // Range 1 upper bound 16 - callback ID is 16
AA 00 // Action2 ID to use if result is not in any of the ranges (go to
graphics action?2)
-1 * 0 02 // Action2
00 // Feature 0 - trains
DD // Action2 ID "DD"
01 // 1 loaded graphic set
01 // 1 loading graphic set
00 00 // Action0O sprite set for buy menu engine and tender graphics
00 00 // Action0O sprite set for buy menu engine and tender graphics
-1 * 0 03 // Action3
00 // Feature 0 - Trains

01 // Apply graphics to one vehicle

$$ // Vehicle ID to apply graphics to (engine)

00 // Number of cargo specific graphics sets 01 - one

FF // cargo type FF - special cargo type for buy menu graphics

DD 00 // Action2 ID for cargo specific graphic set one (buy menu graphics)

CC 00 // Default action2 ID

Note the actionl, action2 and action3 are still required for the tender, but these are the same as in the
previous example.

The articulated vehicle callback is not used for the buy menu graphics, so only the properties of the
engine will be shown. The additional weight due to the tender, etc. will not be shown.

This is how the logic has changed:

ID Action Logic

// Vehicle ID $$

-= Action3 IF [cargo ID = FF] GOTO DD
ELSEIF GOTO CC

DD Action2 apply buy menu graphics

CC Var Action2 IF [callback ID = 16] GOTO BB
ELSEIF GOTO AA

BB CB Action2 IF [number of vehicles in consist = 1] add vehicle with ID **
ELSEIF STOP
AA Action2 apply engine graphics

But I don't want the tender to appear if a train's major cargo is coal.

The "set callback properties" action2 does not have to point to callback results (bit 15 set to 1), but
can also point to other action2s, so long as the eventual outcome is always a callback result. The
variational action2s need to be altered and an additional "set callback properties" action2 needs to be
added.

-1 * 0 02 // Action2 (sets callback properties for callback ID 16)
00 // Feature 0 - Trains
BB // Action2 ID "BB"
81 // Variable type - Query value for current object
// Return a byte
10 // Variable 10 - extra callback information (number of "trailers" added
to articulated vehicle so far)
00 // Shift variable value 0 - no shift
FF // AND mask FF - use all bits
01 // Check variable against one range

** 80 // Bit 15 set, so not action2 ID but callback result. "**" - vehicle
ID to add as trailer to articulated vehicle
01 // Range 1 lower bound 1 - number of "trailers" added to articulated

vehicle so far is one
01 // Range 1 upper bound 1 - number of "trailers" added to articulated
vehicle so far is one
FF FF // Bit 15 set, so not action2 ID set but callback result. Value "FF
FF" so termination of callback chain.
-1 * 0 02 // Action2
00 // Feature 0 - trains
CC // Action2 ID "CC"
81 // Variable type - Query value for current object
// Return a byte
42 // variable 42 - cargoes transported by consist
08 // Shift variable value 8 - shift variable 1 byte to the right

FF // AND mask FF - use all bits
01 // Check variable against one range
FF FF // Action2 ID to use if result is in the first range
01 // Range 1 lower bound 01 - vehicles major cargo is coal
01 // Range 1 upper bound 01 - vehicles major cargo is coal
BB 00 // Action2 ID to use if result is not in any of the range
-1 * 0 02 // Action2 (checks for callbacks)
00 // Feature 0 - Trains
DD // Action2 ID "DD"
81 // Variable type - Query value for current object
// Return a byte
0C // Variable 0C - current callback ID
00 // Shift variable value 0 - no shift
FF // AND mask FF - use all bits
01 // Check variable against one range
CC 00 // Action2 ID to use if result is in the first range (go to callback
action?)
16 // Range 1 lower bound 16 - callback ID is 16
16 // Range 1 upper bound 16 - callback ID is 16
AA 00 // Action2 ID to use if result is not in any of the ranges (go to
graphics action?2?)
-1 * 0 03 // Action3
00 // Feature 0 - Trains
01 // Apply graphics to one vehicle
$$ // Vehicle ID to apply graphics to (engine)
00 // Number of cargo specific graphics sets 00 - none
CC 00 // Default action2 ID

Ok, run that whole variational action2/callback action2 past me again!

There are two "set callback properties" action2s, the later one (ID "CC") first checks to see if the trains
major cargo is coal. If it is coal then it terminates the callback chain with FF FF - no articulated vehicle
is added. If it is not coal then the callback chain is sent to earlier "set callback properties" action2 (ID
"BB") which adds vehicles until the articulated vehicle length is 2.

ID Action Logic

// Vehicle ID **

-= Action3 GOTO AA

CcC Action?2 apply tender graphics

// Vehicle ID $$

-= Action3 GOTO DD

DD Var Action2 IF [callback ID = 16] GOTO CC
ELSEIF GOTO AA

CcC CB Action2 IF [major cargo type = coal] STOP
ELSEIF GOTO BB

BB CB Action2 IF [number of vehicles in consist = 1] add vehicle with ID **
ELSEIF STOP

AA Action2 apply engine graphics

I want to make an articulated road vehicle (a tram), where each
trailer carries cargo.

Callback to build an articulated vehicle. Adds a vehicle of the same vehicle ID (so with the same
capacity, power, etc. as the head of the consist), typically used for DMUs/EMUs and trams. Includes
altering graphics according to position in consist.

Nfo "translation"

There is a tram with no cargo specific graphics.

The tram has a callback which makes it into an articulated vehicle.

The callback should add another two copies of the tram to follow as powered and cargo
carrying trailers.

The tram should take different graphics according to where it is in the consist.

These are the graphics to use for the front tram car.

These are the graphics to use for the middle tram car.

These are the graphics to use for the rear tram car.

These are the real sprites to use.

This corresponds to:

Action3

Variational action2 (check for callbacks)

Callback action2 (add vehicles for articulation)

Variational action2 (change graphics according to consist position)
Action2 (rear)

Action2 (middle)

Action2 (front)

Actionl/Real sprites

However, because nfo code can only refer to an Action2 that has been previously defined, this logical
chain must go in reverse.

Nfo Code

Note: Action0 must also be used to set the other properties for the tram; weight, power, speed, cargo
capacity, etc..

-1 * 0 00 // ActionO

01 // Feature 0 - trains

03 // Number of properties to alter

01 // Alter properties of one vehicle

** // Vehicle ID

OE // Property 12 - sprites for vehicle

FD // Value FD - use new sprites as defined by action3

17 // Property 1E - callbacks bitmask

10 // Value 10 - bit 4 set, so use articulated vehicle callback for this

vehicle
1C // Property 1C - miscellaneous flags
01 // Value 01 - bit 0 set, so this vehicle is a tram
-1 * 0 01 // Actionl

01 // Feature 0 - road vehicles
03 // Three graphics sets
08 // 8 sprites per graphics set

// 24 real sprites - three sets of 8 - set IDs 00 00 (front), 01 00 (middle) and 02 00

(rear)
//
//

-1 * 0 02 // Action2

01 // Feature 0 - trains

AA // Action2 ID "AA"

01 // 1 loaded graphic set

01 // 1 loading graphic set

00 00 // Action0O sprite set for front
00 00 // Action0O sprite set for front

-1 * 0 02 // Action2

01 // Feature 0 - trains

BB // Action2 ID "BB"
01 // 1 loaded graphic set
01 // 1 loading graphic set
01 00 // Action0 sprite set for middle
01 00 // Action0 sprite set for middle
-1 * 0 02 // Action2
01 // Feature 0 - trains
CC // Action2 ID "cCC"
01 // 1 loaded graphic set
01 // 1 loading graphic set
02 00 // Action0 sprite set for rear
02 00 // Action0 sprite set for rear
-1 * 0 02 // Action2

 01 // Feature 1 - Road vehicles
DD // Action2 ID "DD"
81 // Variable type - Query value for current object

// Return a byte

40 // variable 40 - position in and length of consist
00 // Shift variable value 0 - do not shift variable
FF // AND mask FF - use all bits
02 // Check variable against two ranges
AA 00 // Action2 ID to use if result is in the first range

00 // Range 1 lower bound 00 - vehicle is first in consist
00 // Range 1 upper bound 00 - vehicle is first in consist
CC 00 // Action2 ID to use if result is in the second range
02 // Range 2 lower bound 02 - vehicle is third in consist

02 // Range 2 upper bound 02 - vehicle is third in consist
BB 00 // Action2 ID to use if result is not in any of the ranges
-1 *0 02 // Action2 (sets callback properties for callback ID 16)
01 // Feature 1 - Road vehicles
EE // Action2 ID "EE"
81 // Variable type - Query value for current object
// Return a byte
10 // Variable 10 - extra callback information (number of "trailers" added
to articulated vehicle so far)
00 // Shift variable value 0 - no shift
FF // AND mask FF - use all bits
01 // Check variable against one range

** 80 // Bit 15 set, so not action2 ID but callback result. "**" - vehicle
ID to add as a trailer to articulated wvehicle
01 // Range 1 lower bound 1 - number of "trailers" added to articulated

vehicle so far is one
02 // Range 1 upper bound 2 - number of "trailers" added to articulated
vehicle so far is two
FF FF // Bit 15 set, so not action2 ID set but callback result. Value "FF
FF" so termination of callback chain.
-1 *0 02 // Action2 (checks for callbacks)
01 // Feature 1 - Road vehicles
FF // Action2 ID "FE"
81 // Variable type - Query value for current object
// Return a byte
0C // Variable 0C - current callback ID
00 // Shift variable value 0 - no shift
FF // AND mask FF - use all bits
01 // Check variable against one range
BB 00 // Action2 ID to use if result is in the first range (go to callback
action?2)
16 // Range 1 lower bound 16 - callback ID is 16
16 // Range 1 upper bound 16 - callback ID is 16
DD 00 // Action2 ID to use if result is not in any of the ranges (go to
graphics action?2)
-1 * 0 03 // Action3

01 // Feature 1 - Road vehicles

01 // Apply graphics to one vehicle

** // Vehicle ID to apply graphics to

00 // Number of cargo specific graphics sets 00 - none
CC 00 // Default action2 ID

Ok, run that whole variational action2/callback action2 past me again!
The easiest way to explain what is happening is by some pseudo-basic programing language. Logic is

shown in CAPITALS, variables in italics, [tests in square brackets] and actions in bold. This code is
written in reverse order to the actual nfo code, to make the logic make a bit more sense.

ID Action Logic
// Vehicle ID **
-— Action3 GOTO FF

FF Var Action2 IF [callback ID = 16] GOTO EE
ELSEIF GOTO DD

EE CB Action2 IF [number of vehicles in consist = 1] add vehicle with ID **
ELSEIF STOP

DD Var Action?2 IF [vehicle position = 1] GOTO AA
IF [vehicle position = 3] GOTO CC

ELSEIF GOTO BB

ccC Action2 apply last vehicle graphics
BB Action?2 apply middle vehicle graphics
AA Action2 apply first vehicle graphics

Actually I want 4 vehicles in the articulated consist...

To change the number of vehicles the callback properties and variational action2 for graphics need to
be changed. Altering the callback properties adds the extra vehicle, and altering the variational action2
corrects the graphics:

-1 *0 02 // Action2

01 // Feature 1 - Road vehicles

DD // Action2 ID "DD"

81 // Variable type - Query value for current object
// Return a byte

40 // variable 40 - position in and length of consist

00 // Shift variable value 0 - do not shift variable

FF // AND mask FF - use all bits

02 // Check variable against two ranges

AA 00 // Action2 ID to use if result is in the first range
00 // Range 1 lower bound 00 - vehicle is first in consist
00 // Range 1 upper bound 00 - vehicle is first in consist

CC 00 // Action2 ID to use if result is in the second range
03 // Range 2 lower bound 03 - vehicle is fourth in consist
03 // Range 2 upper bound 03 - vehicle is fourth in consist

BB 00 // Action2 ID to use if result is not in any of the ranges

-1 *0 02 // Action2 (sets callback properties for callback ID 16)

01 // Feature 1 - Road vehicles

EE // Action2 ID "EE"

81 // Variable type - Query value for current object
// Return a byte

10 // Variable 10 - extra callback information (number of "trailers" added

to articulated vehicle so far)

00 // Shift variable value 0 - no shift

FF // AND mask FF - use all bits

01 // Check variable against one range

** 80 // Bit 15 set, so not action2 ID but callback result. "**" - vehicle
ID to add as a trailer to articulated vehicle
01 // Range 1 lower bound 1 - number of "trailers" added to articulated
vehicle so far is one
03 // Range 1 upper bound 3 - number of "trailers" added to articulated
vehicle so far is three
FF FF // Bit 15 set, so not action2 ID set but callback result. Value "FF
FF" so termination of callback chain.

And this is how the logic changed:

ID Action Logic
// Vehicle ID **
- Action3 GOTO FF

FF Var Action2 IF [callback ID = 16] GOTO EE
ELSEIF GOTO DD
EE CB Action2 IF [1 </= number of vehicles in consist </= 2] add vehicle with ID
** REPEAT
ELSEIF STOP
DD Var Action2 IF [vehicle position 1] GOTO AA
IF [vehicle position = 4] GOTO CC
ELSEIF GOTO BB

CC Action?2 apply last vehicle graphics
BB Action2 apply middle vehicle graphics
AR Action?2 apply first vehicle graphics

Players should only be able to pull passenger and mail carriages
with this engine.

Callback to allow addition of only select vehicle IDs to the consist. Includes optional text in buy window
callback too.

{{not finished}}

I want the passenger carriages added to my train to be 3/4 the
length of normal passenger carriages.

Livery override driven callback for vehicle length.

{{not finished}}

Randomized Action2s

I want the box cars added to any train to be random colours.

This is a basic example of how to use a randomized action2 to give a vehicle random non-cargo specific
graphics.

Nfo "translation"

There is a vehicle with no cargo specific graphics (the box car).
There are three different graphics sets to choose between.
These are the graphics for the first colour scheme.

These are the graphics for the second colour scheme.

These are the graphics for the third colour scheme.

These are the real sprites to use.

This corresponds to:
Action3

Randomized Action2
Action2

Action2

Action2
Actionl/Real sprites

However, because nfo code can only refer to an Action2 that has been previously defined, this logical
chain must go in reverse.

Nfo Code

Note: Action0 must be used to enable new graphics for the vehicle involved.

-1*0 01 // Actionl
00 // Feature 0 - trains
04 // Three graphics sets
08 // 8 sprites per graphics set
// 36 real sprites - four sets of 8 - set ID 00 00 (colour scheme 1), 01 00 (colour
scheme 2), 02 00 (colour scheme 3) and 03 00 (colour scheme 4).
//
//
-1 * 0 02 // Action2
00 // Feature 0 - trains
AA // Action2 ID "AA"
01 // 1 loaded graphic set
01 // 1 loading graphic set
00 00 // ActionO sprite set for colour scheme 1
00 00 // ActionO sprite set for colour scheme 1
-1 * 0 02 // Action2
00 // Feature 0 - trains
BB // Action2 ID "BB"
01 // 1 loaded graphic set
01 // 1 loading graphic set
01 00 // ActionO sprite set for colour scheme 2
01 00 // ActionO sprite set for colour scheme 2
-1 * 0 02 // Action2
00 // Feature 0 - trains
CC // Action2 ID "CC"
01 // 1 loaded graphic set

01
02
02
-1 *0 02
00
DD
01
01
03
03
-1 * 0 02
00
EE
80
01
cargo load
00
04

-1 *0 03
00
01
* %
00
EE

//
00
00
//
//
//
//
//
00
00
//
//
//
//
//

//
//
AA
BB
cc
DD
//
/7
//
/7
//
00

1 loading graphic set

// Action0O sprite set for colour scheme 3

// Action0O sprite set for colour scheme 3

Action?2

Feature 0 - trains

Action2 ID "DD"

1 loaded graphic set

1 loading graphic set

// Action0O sprite set for colour scheme 4

// Action0O sprite set for colour scheme 4

Action2

Feature 0 - Trains

Action2 ID "EE"

Randomise vehicle as an individual, not according to head of consist
Randomisation trigger bit mask - bit 0 set so randomised with new

Randomise all bits

Number of sets to randomise from
00 // Randomised set 1

00 // Randomised set 2

00 // Randomised set 3

00 // Randomised set 4

Action3

Feature 0 - Trains

Apply graphics to one vehicle
Vehicle ID to apply graphics to
Number of cargo specific graphics sets 00 - none
// Default action2 ID

Actually, I would like all the box cars in the consist to take the same
colour scheme as each other, to simulate carrying a particular
company's cargo.

Randomisation can either be based on the individual vehicles or the "related object" (the head of the
consist), similar to variational action2s. By randomising according to the head of the consist all box
cars in that consist will be the same colour. Only the randomised action2 needs altering:

-1 * 0 02
00
EE
83

individual
01

cargo load
00
04

//
//
/7
//

//

//

/7
AA
BB
cc
DD

Action2

Feature 0 - Trains

Action2 ID "EE"

Randomise vehicle according to the head of the consist, not as an

Randomisation trigger bit mask - bit 0 set so randomised with new

Randomise all bits

Number of sets to randomise from
00 // Randomised set 1

00 // Randomised set 2

00 // Randomised set 3

00 // Randomised set 4

Action7/9s

I want to have my vehicles only available in certain climates.

Action0 and action7/9s required to use additional vehicles from other climates when in one climate, but
return them to the defaults when in another climate.

	
	
	
	
	
	Vehicle GRF Tutorials/Examples -
	Common GRF Coding Challenges
	FAQs
	Can I copy and paste the code into my GRFs?
	Can I copy and paste the code into a wiki?
	Can you add this example?
	I think I have found a mistake...
	Can I contribute?

	Action0s
	I want to change a vehicle's properties.
	Nfo Code Structure
	Notice the way each property works:
	
	How does a bitmask work?

	I want to do more than just modify trains in a climate, I want more trains!
	I want to make some trams!

	Action4s
	I want to change a vehicle's name.

	Action1s and Normal Action2 and 3s
	I want a train which uses custom graphics.
	Nfo "translation"
	Nfo Code

	I want a wagon which uses custom graphics, with different graphics depending on how full the vehicle is.
	Nfo "translation"
	Nfo Code
	But I want 3 stages of loading, then when the vehicle is moving show the wagon covered by a tarpaulin.

	I want a wagon which uses custom graphics, with 2 cargoes (coal and iron ore) both with different graphics.
	Nfo "translation"
	Nfo Code
	The vehicle can be refitted to any bulk cargo, how do I give some generic graphics when the wagon is not carrying coal or iron ore?

	I want the vehicle to appear differently in the buy menu.
	Nfo "translation"
	Nfo Code

	Variational Action2s
	I want to have a train passenger carriage that gets dirty/rusted as it gets older.
	Nfo "translation"
	Nfo Code
	Actually, I want the graphics to change according to the age of the engine pulling the carriage.

	I want a tilting carriage for my tilting train.
	Nfo "translation"
	Nfo Code

	Livery Override Action3
	I want my new double headed train graphics to have matching passenger cars.
	Nfo "translation"
	Nfo Code
	But I want to have different graphics for if the passenger is immediately behind or in front of the double headed engine.

	Callback Action2s
	I want to make a steam train with a tender.
	Nfo "translation"
	Nfo Code
	The tender doesn't appear in the buy menu, how do I make it appear there?
	
	But I don't want the tender to appear if a train's major cargo is coal.

	I want to make an articulated road vehicle (a tram), where each trailer carries cargo.
	Nfo "translation"
	Nfo Code
	Actually I want 4 vehicles in the articulated consist...

	Players should only be able to pull passenger and mail carriages with this engine.
	I want the passenger carriages added to my train to be 3/4 the length of normal passenger carriages.

	Randomized Action2s
	I want the box cars added to any train to be random colours.
	Nfo "translation"
	Nfo Code
	Actually, I would like all the box cars in the consist to take the same colour scheme as each other, to simulate carrying a particular company's cargo.

	Action7/9s
	I want to have my vehicles only available in certain climates.

