The Rainfall River Generator

icll1
November 30, 2014

Contents

1 Introduction 1
1.1 Features 2
1.2 Generation Steps 4

2 (Generator details 5
2.1 Height Index D
2.2 Number of Lower tiles 5)
2.3 Flow . . . 6
2.4 Debugging 7
2.5 Flow Modifications 8
2.6 Wider rivers 9
2.7 Wider valleys 12
2.8 Lakes. 14

3 Configuration 16

4 The patch queue 17

1 Introduction

The river generator so far present in OpenTTD generates rivers by some
path-finding algorithm, without considering landscape at a large scale. Its
results are often far from desired.

The Rainfall River Generator aims at doing a better job, and generating
real-world-looking rivers and lakes in OpenTTD. The basic idea is calculating

1

water flow for the whole landscape, and adding rivers and lakes wherever flow
is sufficient. As flow is always directed downwards, this automatically adds
rivers to valleys. In contrast, the old generator often fails to put rivers into
valleys, as they don’t contain that many tiles suitable for rivers, and its
search doesn’t consider landscape at a large scale.

Note that the Rainfall River Generator aims at generating real world
looking like rivers and lakes to OpenTTD. This comes at a cost in terms
of calculation speed: Don’t expect it to calculate the rivers for a big map
within a second. This wasn 't my aim, nor are 4096x4096 maps my primary
usecase for such a generator, as they are ways to big to play them sensefully
anyway. But as map-generation is a one-time-step that is done once before
playing a map for days or weeks of real-world-time, IMHO the performance
is ok.

1.1 Features

Features of the Rainfall River Generator:

e Each tile receives one unit of water, that water flows downwards, sums
up in valleys and lakes. Rivers and lakes are produced wherever more
flow than some configurable bounds is available.

e Thus, the amount of rivers and lakes is completely free to the player.
Needed flow 151 for a river gives a bit more rivers than needed flow
150.

e Nevertheless, some predefined settings Few, Moderate, and Lot exist,
that translate into the configuration world of the Rainfall River Gen-
erator.

e Rivers are connected, i.e. if a river starts somewhere, it proceeds with-
out any gap until it disappears in a lake or the ocean or the map edge.

e Lakes are generated wherever the landscape generator (or heightmap)
leaves a lake basin. Adding such lake basins in the generator itself
would be possible (but is not yet implemented), but both tgp and
heightmaps of mountainious areas aren ‘'t exactly known for generating
too few basins...

Depending on how much flow is consumed per lake tile volume, lakes
can overflow into a river to the ocean or the next lake, or just consume
all rivers flowing into.

Lakes generated by the Rainfall River Generator conceptionally have a
lake depth (the difference between their surface height, and the original
tile height). Unfortunately, the game doesn’t support the concept of a
lake depth, but maybe this changes in future?

Wider rivers are supported: If a river has more flow than some config-
urable bounds, then it will be generated with width 2, 3 or whatever
the player causes by configuring the generator.

Optionally, islands, fan deltas or additional shore tiles can be added to
lakes with some configurable probability.

Optionally, lakes can dig an outflow canyon with some configurable
probability, which essentially transforms them into a river.

By using the latter feature, there is a way of transforming the often
inverted-pyramid-lake landscape generated by tgp into a landscape con-
taining much more real-world-like valleys.

As valleys generated from heightmaps are often quite small at there
basis, and don "t offer much usable, flat, space, the generator optionally
can make valleys with a river in them wider.

1.2

Generation Steps

The generator performs the following steps to generate the water. Detailed
descriptions are subject to the following chapters.

1.

Generate an index of the heightlevels on the map. This aims at being
able to do some work for all tiles of a given heightlevel, without needing
to inspect all tiles separately.

Bottom-up, for each tile, calculate the number of lower tiles needed on
a path to the ocean or a lake basin. Bottom-up means, first for all flat
tiles of height zero, then for all inclined tiles of height zero, then for all
steep tiles of height zero, then for all flat tiles of height one, and so on.

Top-down, calculate the flow amount and flow direction for each tile.
Flow is basically the sum of all water that rained on higher tiles, and
flowed to the tile at hand.

Modify flow in a random manner, to make rivers less straight and more
realistic looking, with curves in them. Of course maintain the proper-
ties that flow never leads upwards, and is never cyclic.

So far, lake basins were just marked as lake centers, that receive flow
which disappers there. Now, define real lakes, by iteratively adding
tiles to the lake, until an outflow is found, or the needed flow per lake
tile volume is exhausted. In the outflow case, all flow is progagated
downwards, i.e. a big river flowing into a lake doesn "t disappear there.

Find out which tiles actually become river and lake tiles

Terraform river beds, and lakes to their surface height, and modify
lakes according to the configuration (possible options: reduction to
the absolutely necessary tiles to keep the lake connected, addition of
islands, fan deltas, expanding the shore).

Optionally, generate wider rivers and wider valleys.

Bottom-up, perform final terraforming tasks, to make all tiles planned
to be water tiles have a suitable slope.

2 Generator details

Here, you can find a detailed look on both how the generator works.

2.1 Height Index

The aim of the height index is being able to quickly find all tiles of a given
height. For this purpose, it partitions map into 2x2, 4x4, 8x8, and so on,
rectangle. See figure ?7. The height index stores, that the minimum height
present in the bottom 4x4 rectangle is 1, and the maximum height is 3. All
other marked 4x4 have at most height 1. Thus, if we search for all tiles of
height 3, we only have to inspect the bottom one of the blue grids.

Hote: Height in terms GetTiled

Figure 1: Structure of the height index.

2.2 Number of Lower tiles

For each tile, the generator determine the number of lower tiles. The aim of
this number is giving the flow calculation algorithm a clue, where in a huge,
flat, valley it must look for the exit into the ocean. Without that number,
that decision would have to be a random one, and would often be wrong.

Have a look at screenshot 2.2. We are somewhere in a huge, flat valley.
The red numbers of lower tiles that tell us that the ocean (or some lake
basin) is somewhere in the south-west, but more than 160 tiles away. Thus,
the next algorithm can direct flow to the south-west.

Figure 2: Number of lower tiles

2.3 Flow

Based on the number of lower tiles, flow calculation then calculates both
flow amount and flow direction. It assumes that each tile receives one unit
of water. Screenshot 2.3 shows a small example: The main flow path in the
valley goes from 198 to 199 to 207 (where it gains the small side flow 6) to
209 to 210. The river starts at flow 207, because this is the first time the flow
exceeds the minimum flow for a river, which in this example was configured
to the value 200.

This essentially means, that for each river starting somewhere, 199 tiles
without river exist somewhere above it. 199 because the tile itself also adds
one unit of flow. Thus, in the example, 199 plus 1 for the tile between 199
and 6, plus 6 gives 206, plus one for the tile itself gives 207.

Figure 3: Flow amount and flow directions (from higher to lower numbers)

2.4 Debugging

Those values (number of lower tiles, flow) are calculated for the whole map.
To debug what the algorithm does, I temporarily added these values to the
landinfo window, where they are available if and only if the map was just gen-
erated. This, however, is not meant to be a permanent part of the generator,
its just there for debugging purposes.

Land Area Information

Grass
N/A

NS N B i
541
199 Southeast
None

Figure 4: Debugging information in land info window

2.5 Flow Modifications

The flow generated so far leads to quite straight rivers, as you can see in the
following screenshot.

Figure 5: Generated Rivers without the flow modification step

The reason for this is, that the number of lower tiles metrics basically
consists the distance to water, and that distance tends to increase along a
straight line, at least in a flat area.

To improve those rivers, the generator can apply flow modifications on
the flow generated above. The number of flow modifications (per 1000 tiles)
can be configured. One flow modification works as follow:

1. Find a random tile
Follow its flow until it exceeds have the flow necessary for a river

Determine an angle based on current flow direction.

= W

In phases Straight, Left, and Right, step forward tile by tile, and based
on the phase, modify the angle.

5. From time to time, switch phase, with a bias towards Straight, and
towards heading to the opposite direction after one of the direction
phases was chosen. This is to decrease the probability of ending up
completely elsewhere than the original flow.

Obviously, some of the flow modifications will not work, as the above
algorithm of course can produce cycles, or end up somewhere were it could
only head upwards.

(Nearly) the same area as above looks as follows, if one applies 30 flow
modifications per 1000 tiles:

Figure 6: Generated Rivers with 30 flow modifications per 1000 tiles

The straight lines have disappeared, instead the upper river now has a 180
degree turn before proceeding further to the east, just as rivers sometimes
have in reality.

2.6 Wider rivers

As described above, a river starts once flow exceeds the configured neces-
sary flow for a river. One can optionally enable wider rivers, and specify
a multiplier. Consider for example necessary flow 200, and multiplier 10.
Then,

e Rivers with flow between 200 and 1999 have width 1

e Rivers with flow between 2000 and 19999 have width 2

e Rivers with flow between 20000 and 199999 have width 3
e and so on

The result looks as follows:

Solfofen (5, 4581

5 y'nj_vi_i] gen{154)

Figure 7: Wider Rivers

The river at the right, lowing from south to north comes with flow 172000,
and is thus 3 tiles wide. The river passing Solfoten in the South flows from

10

West to East, and has about flow 3000. The river passing Solfoten in the
Center has about flow 8000. Thus, those two rivers have width 2. Finally,
the river in the North of Solfoten is the smallest one, it just has flow 1500.

Note that here one can see a special artifact of the generator: Crossing
rivers. The 8000-river doesn 't flow into the 172000-river right away, but
crosses it and flows further to the east. It finally joins the big river about 25
tiles to the east:

U

‘.S_,E?_'_.ra n?ﬁr {417])

Figure 8: Wider Rivers

I don’t regard this a bug, but a feature, since it can give the impression
of river deltas and river islands.

11

2.7 Wider valleys

Valleys in heightmaps tend to be quite small, as the mountain slopes in real
world are too steep for OpenTTDs world. In essence, many flat areas where
in real world cities are situated are consumed by this.

Screenshot 2.7 shows a valley as it is generated with the raw river gen-
erator. The river consumes the whole basis of the valley (in fact, it already
lowered some tiles to make space as it is wider than one tile). Space for
positioning a city, or a railroad? Hardly any.

Figure 9: Valley generated without wider valleys
Now generate the same, with wider valleys multiplier 5. The mountains

around have become somewhat lower, but now, we actually have space in our
valley.

12

Figure 10: Valley generated with wider valleys enabled

The meaning of the multiplier is: At each side of the river, have a look
at a number of tiles equal to the river width multiplied with the multiplier.
For example here: 10 tiles as the river is 2 tiles wide and the multiplier is 5.
Start at the river, follow a line away from the river. In each step, increase
height by one with probability number of tiles away from river divided by
max distance from river. Thus, tiles near to the river stay low with quite
high probability, tiles farer away get somewhat higher, just as in a real world
valley.

Note that the rivers paths in the second screenshot look a bit different, as
number of lower and flow generation contains some probabilistic elements.

13

2.8 Lakes

The flow generation algorithm described above just recorded a lake center if
it found a lake basin, where it coulnd "t proceed downwards.
Lake calculation then works as follows:

e Start with the inflow of the lake, set the surface height to the height of
the lake center.

e Add tiles of equal height as the surface height to the lake.

e For each tile added to the lake, decrement the configured flow needed
per lake volume from the available flow.

e If we run out of flow, we stop adding further tiles, the lake stays at it
is without outflow.

e If before that happens, a tile is found, whose flow doesn’t end up in
the lake, it is an outflow tile. It will receive all the flow of the lake.

e If no further tile of surface height can be added to the lake, and flow
isn 't exhausted yet, then the surface height will be raised by one, and
the algorithm proceeds with the new surface height.

e Raising the surface height costs number of lake tiles times the flow
needed per lake tile volume, i.e. needed flow for a lake is really a
three-dimensional concept.

e If during that algorithm, another lake center is found, the respective
lake will be consumed, i.e. the two lakes will be merged, and the
algorithm will proceed after adding the flow of the consumed lake. As
both heightmap loading and tgp produces many lake basins at the small
scale (i.e. one tile down, one tile up), this is a quite frequent case.

Propagating the flow of the lake downwards the outflow causes the need
to have a look at all lakes downwards (rivers weren’t calculated yet at that
step, just flow, i.e. this has no relation to wider rivers). Of course, in a
recalculation an already found outflow will be reused.

If, in contrast, no outflow was found yet, the algorithm above will be
continued.

14

In a later step, optionally islands, fan deltas, and additional shore tiles
can be added to lakes. In essence, the result may look as follows:

Figure 11: A lake

Note that if you set the flow needed per lake tile volume to zero, then
every lake, regardless how deep its basin is, will get an outflow. This can
be useful to make the very best of the landscape generated by tgp, i.e. the
player now sees a lake, and no longer the ugly inverted pyramid tgp maybe
calculated.

Also, one can optionally dig outflow canyons for lakes with some config-
ured probability (i.e. lower the surface height accordingly). Together with
the reduction of lakes to their necessary tiles to keep them connected (also
configurable) this can help adding some more or less realistic valleys to a
landscape generated by tgp.

15

3 Configuration

The patch changes the map generation and generate from heightmap window
as follows:

World Generation

Generate

Figure 12: The adjusted Generate from Heightmap window

Basically, now one can choose the river generator, and optionally configure
detail settings for it. More interesting, the options of the Rainfall River
Generator look as follows:

r ' ' Conhiguration ot Raintall River Generator

Basic settings Rivershape
T 200 * " 50 °
(25 |4 on - 7 10 -
on - [5 19

Eine-tuning lakes

Figure 13: Configuration window of the Rainfall River Generator

Most of the settings where already described before (look into the respec-
tive chapters of the manual), thus just some general remarks:

16

Probabilities are always given in the range 0 to 1000, to have fine
control.

The maximum sizes in the bottom section refer to the maximum size
of e.g. an island that can be generated in a step. A step is one run of
the respective algorithm, that will be executed on a tile with the given
probability.

Example: The screenshot tells: If you have an arbitrary lake tile, start
an island there with at one percent probability, with maximum size 20.

The actual size is a random number smaller than 20.

Note that if the start tile of an island is near the edge of the lake, then
it will merge with the shore, maybe forming a peninsula.

Note that before actually calculating islands etc., the calculator will have
a look which tiles it needs to keep the lake (i.e. all inflow tiles and the
outflow) connected. It will never declare such tiles land tiles.

4 The patch queue

000_Debug Just a small patch for easier debugging. Replaces GetTileZ

by GetTileHeight in the land info window, and removes the automatic
print-out of land-info everytime the user clicks somewhere (it is really
tedious if you inspect a log output, and on each click the log scrolls
away...). Not meant to be permanent.

002_RiverGeneratorOO The river generator so far lived in landscape.cpp,

together with various other things. This patch refactors river genera-
tion to be object oriented, i.e. moves all code of the original generator
into a new class named PathRiverGenerator. Can be applied indepen-
dent of the remaining patch queue.

003_SaveGameBump Introduces a new savegame version. The only saveg-

ame relevant change of the patch queue are some new config settings.

005_AdjustMapGeneratorGUI Changes to the genworld_gui, to support

choosing from more than one river generator on GUI level. Also adds

17

a button meant to open a window for river generator related expert
option.

007_RiverExpertGUISkeleton A new window (without any content at
this point) meant to contain expert options for the rainfall river gener-
ator. Content and functionality will be added in later patches.

010_RiverExpertGUIWidgets Widgets (not yet functionality) for the rain-
fall expert options gui.

011 _SkeletonRainfallRiverGenerator A skeleton class for the new Rain-
fall River Generator, without any functionality yet.

012 _ConfigSettings New config settings for configuring the work of the
Rainfall River Generator in detail, plus constants defining default val-
ues and bounds for those settings.

015 _RainfallOptionsRead Populating the expert options window with the
respective config values.

016_RainfallOptionsChangeSettings Adding the functionality to actu-
ally change the settings to the expert settings window.

017_RainfallOptionsWidgetState Widgets changing state because the
current configured state changes.

018_UseDefaultValuesForRiver Amount Translate the general Few / Mod-
erate / Lot of Rivers setting into the config settings world of the Rainfall
River Generator.

019_ActivateRainfallRiverGenerator After this patch, the Generate func-
tion of the Rainfall River Generator (though at this point still empty)
will be actually called if the generator is chosen and landscape will be
generated.

020_HeightIndex Add the concept of a HeightIndex for fast access of all
tiles of a given height. Without this, nearly ten times the maximum
heightlevel, all tiles of the map would have to be scanned. As it is
general, not specifially river-related code, it is added to a new file land-
scape_util.

18

030_HeightIterator Adds a Heightlterator for iterating over all tiles of a
given height to landscape_util.

035_DebugNumberOfLowerTiles Debug code for being able to inspect
the result of the next patches in the land info window. Not meant to
be added permanently.

037_ConnectedComponentCalculator Adds an API for calculating a
connected component of tiles based on some properties.

040_NumberOfLowerTiles For each tile, calculate the length of a reason-
able path downwards to a depression (forming a lake lateron) or the
sea. Do this bottom-up.

045_DebugWaterFlowInLandInfo Show water flow (which will be calcu-
lated by the next patch) in the land info window. Patch is just for
debugging and not meant to be permanently.

050_CalculateFlow Based on the measure calculated in patch 040, this
patch calculates water flow in a top-down manner. Water flows to
lower tiles, and if height is equal, to tiles with a lower number of lower
tiles as calculated by patch 040. This way, water will head towards the
sea, even if we are in a huge plain area. If flow finds a depression which
is not the sea, then this patch just records a lake center and leaves that
lake center for the lake generation code in patch 070.

060_TerraformFromMapGen Refactor the well-known terraformer code
in terraform_cmd, in order to be able to terraform from landscape gen-
eration. This is needed, as in contrast to the landscape generator, the
river generator always assumes to operate on a valid landscape (i.e. we
cannot just set heightlevels in an arbitrary way). However, sometimes
the river generator needs to terraform landscape on the small scale, in
order to make room for river beds, to terraform lake surfaces, to dig
outflow canyons for lakes.

062_MoveTerraformerStateFunctions Make some terraformer state re-
lated functions member functions of struct TerraformerState, for the
sake of software design and easier access to those functions from the
river generator code.

19

063 _FixShores This patch is a workaround patch: According to my tests,
the TerraformTileToSlope function introduced in patch 060 leaves tiles
sea even if they are raised to height greater than zero. This then leads
to an assertion in drawing code. This patch adds an extra step after
the river generator has run, where those tiles are fixed. Hints how this
can be done the right way are welcome.

065 _LakePathSearch This patch adds the ability to search a path inside
a Lake, using Aystar. This is used lateron e.g. when declaring the tiles
that are needed to keep the lake connected guaranteed.

070_DefineLakes The flow calculation in patch 050 simply declared a de-
pression a lake center, if it couldn t find any path further downwards.
Here, we define which of these lake centers grow to lakes, and where
their water flows to after the lake has been filled up. The logic imple-
mented in this patch is probably the most sophisticated in the whole
patch queue, as one has to take care about lakes consuming other lakes,
lakes that have a higher surface height than the lake where their water
comes from, and so on.

090_TerraformRivers This patch terraforms as many of the river tiles as
possible to have a valid slope for a river. A 100 percent success per-
centage cannot be guaranteed in this step. This is no harm, as a later
fine-tuning step does the rest.

100_TerraformLakes Here, lakes are terraformed to their surface height.

105_FineTuneTiles The above terraforming algorithms typically leave some
tiles planned as water, but with invalid slope. This is no harm, and
perfectly within the concept of those algorithms, but still, it needs to
be fixed by terraforming tiles on the small scale. This is the task of
this patch.

130_ModifyFlow The flow (and thus the river paths) as calculated by path
050) are quite straight, as they depend on a simple number of lower
tiles to water measure. This patch randomly adds some curves to flow
while of course keeping the property that water flows downwards.

140_GuaranteedLakeTiles Some of the subsequent patches modify lakes
in some way, e.g. by adding islands or peninsulas. This patch declares

20

lake tiles guaranteed in the sense that they may not be touched by those
algorithms. Otherwise, those algorithms may accidentally split up a
lake where e.g. a huge river flows through into pieces. l.e. guaranteed
lake tiles are a measure to keep a lake connected.

150_LakeModificator Lakes generated so far e.g. have seldom islands, or
tend to fill up valleys completely, leaving few space for towns etc. This
patch sets up an API for modifying already defined lakes.

160_OnlyGuaranteedLakeModificator This LakeModificator reduces a
lake to its guaranteed lake tiles.

170_FanDeltaLakeModificator This LakeModificator adds some sort of
a fan delta at some inflow tiles (i.e. where a river flows into a lake)

180_IslandLakeModificator This LakeModificator adds some islands to a
lake.

190_ExpandLakeShore This LakeModificator expands the shore of a lake,
to make room for other stuff.

200_WiderLakes So far, only lakes of width 1 tile were calculated. This
patch adds the ability to generate rivers and guaranteed lake paths
wider than one tile, if there is really much flow available. This way, a
distinction between small side-rivers and large main-rivers is visible to
the player.

210_WiderValleys When generating landscape from heightmaps for moun-
tainious real-world-heightmaps, valleys tend to the very deep and small.
The background for this is that the slopes the valleys have in reality are
too steep for the dimensions available in OpenTTDs world. If rivers are
added to such valleys, there quickly isn’t any space usable for cities,
railroads, etc. left. This patch adds the option to automatically make
all valleys with a river wider, by lowering tiles in an appropriate man-
ner.

250_GenerationProgress Add steps for the Rainfall River Generator to
the world generation progress.

21

